ﻻ يوجد ملخص باللغة العربية
We report an observation of X-ray emission from the exciting region of Cepheus A with the Chandra/ACIS instrument. What had been an unresolved X-ray source comprising the putative power sources is now resolved into at least 3 point-like sources, each with similar X-ray properties and differing radio and submillimeter properties. The sources are HW9, HW3c, and a new source that is undetected at other wavelengths h10. They each have inferred X-ray luminosities >= 10^31 erg s^-1 with hard spectra, T >= 10^7 K, and high low-energy absorption equivalent to tens to as much as a hundred magnitudes of visual absorption. The star usually assumed to be the most massive and energetic, HW2, is not detected with an upper limit about 7 times lower than the detections. The X-rays may arise via thermal bremsstrahlung in diffuse emission regions associated with a gyrosynchrotron source for the radio emission, or they could arise from powerful stellar winds. We also analyzed the Spitzer/IRAC mid-IR observation from this star-formation region and present the X-ray results and mid-IR classifications of the nearby stars. HH 168 is not as underluminous in X-rays as previously reported.
The Cepheus B (CepB) molecular cloud and a portion of the nearby CepOB3b OB association, one of the most active regions of star formation within 1 kpc, have been observed with the IRAC detector on board the Spitzer Space Telescope. The goals are to s
We present linear and circular polarization observations of the water masers in 4 distinct regions spread over 1x2 arcseconds around the HW2 high-mass young stellar object in the Cepheus A star-forming region. We find magnetic fields between 100-500
Massive young star clusters contain dozens or hundreds of massive stars that inject mechanical energy in the form of winds and supernova explosions, producing an outflow which expands into their surrounding medium, shocking it and forming structures
VLBI multi-epoch water maser observations are a powerful tool to study the dense, warm shocked gas very close to massive protostars. The very high-angular resolution of these observations allow us to measure the proper motions of the masers in a few
We report our 110 ks Chandra observations of the supernova remnant (SNR) 0104-72.3 in the Small Magellanic Cloud (SMC). The X-ray morphology shows two prominent lobes along the northwest-southeast direction and a soft faint arc in the east. Previous