ترغب بنشر مسار تعليمي؟ اضغط هنا

The Hubble Sequence beyond z=2 for Massive Galaxies: Contrasting Large Star-Forming and Compact Quiescent Galaxies

256   0   0.0 ( 0 )
 نشر من قبل Mariska Kriek
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Mariska Kriek




اسأل ChatGPT حول البحث

No English abstract



قيم البحث

اقرأ أيضاً

Early quiescent galaxies at z~2 are known to be remarkably compact compared to their nearby counterparts. Possible progenitors of these systems include galaxies that are structurally similar, but are still rapidly forming stars. Here, we present Karl G. Jansky Very Large Array (VLA) observations of the CO(1-0) line towards three such compact, star-forming galaxies at z~2.3, significantly detecting one. The VLA observations indicate baryonic gas fractions >~5 times lower and gas depletion times >~10 times shorter than normal, extended massive star-forming galaxies at these redshifts. At their current star formation rates, all three objects will deplete their gas reservoirs within 100Myr. These objects are among the most gas-poor objects observed at z>2, and are outliers from standard gas scaling relations, a result which remains true regardless of assumptions about the CO-H2 conversion factor. Our observations are consistent with the idea that compact, star-forming galaxies are in a rapid state of transition to quiescence in tandem with the build-up of the z~2 quenched population. In the detected compact galaxy, we see no evidence of rotation or that the CO-emitting gas is spatially extended relative to the stellar light. This casts doubt on recent suggestions that the gas in these compact galaxies is rotating and significantly extended compared to the stars. Instead, we suggest that, at least for this object, the gas is centrally concentrated, and only traces a small fraction of the total galaxy dynamical mass.
177 - Guillermo Barro 2012
We combine high-resolution HST/WFC3 images with multi-wavelength photometry to track the evolution of structure and activity of massive (log(M*) > 10) galaxies at redshifts z = 1.4 - 3 in two fields of the Cosmic Assembly Near-infrared Deep Extragala ctic Legacy Survey (CANDELS). We detect compact, star-forming galaxies (cSFGs) whose number densities, masses, sizes, and star formation rates qualify them as likely progenitors of compact, quiescent, massive galaxies (cQGs) at z = 1.5 - 3. At z > 2 most cSFGs have specific star-formation rates (sSFR = 10^-9 yr^-1) half that of typical, massive SFGs at the same epoch, and host X-ray luminous AGN 30 times (~30%) more frequently. These properties suggest that cSFGs are formed by gas-rich processes (mergers or disk-instabilities) that induce a compact starburst and feed an AGN, which, in turn, quench the star formation on dynamical timescales (few 10^8 yr). The cSFGs are continuously being formed at z = 2 - 3 and fade to cQGs by z = 1.5. After this epoch, cSFGs are rare, thereby truncating the formation of new cQGs. Meanwhile, down to z = 1, existing cQGs continue to enlarge to match local QGs in size, while less-gas-rich mergers and other secular mechanisms shepherd (larger) SFGs as later arrivals to the red sequence. In summary, we propose two evolutionary scenarios of QG formation: an early (z > 2), fast-formation path of rapidly-quenched cSFGs that evolve into cQGs that later enlarge within the quiescent phase, and a slow, late-arrival (z < 2) path for SFGs to form QGs without passing through a compact state.
We quantify the presence of Active Galactic nuclei (AGN) in a mass-complete (M_* >5e10 M_sun) sample of 123 star-forming and quiescent galaxies at 1.5 < z < 2.5, using X-ray data from the 4 Ms Chandra Deep Field-South (CDF-S) survey. 41+/-7% of the g alaxies are detected directly in X-rays, 22+/-5% with rest-frame 0.5-8 keV luminosities consistent with hosting luminous AGN (L_0.5-8keV > 3e42 ergs/s). The latter fraction is similar for star-forming and quiescent galaxies, and does not depend on galaxy stellar mass, suggesting that perhaps luminous AGN are triggered by external effects such as mergers. We detect significant mean X-ray signals in stacked images for both the individually non-detected star-forming and quiescent galaxies, with spectra consistent with star formation only and/or a low luminosity AGN in both cases. Comparing star formation rates inferred from the 2-10 keV luminosities to those from rest-frame IR+UV emission, we find evidence for an X-ray excess indicative of low-luminosity AGN. Among the quiescent galaxies, the excess suggests that as many as 70-100% of these contain low- or high-luminosity AGN, while the corresponding fraction is lower among star-forming galaxies (43-65%). The ubiquitous presence of AGN in massive, quiescent z ~ 2 galaxies that we find provides observational support for the importance of AGN in impeding star formation during galaxy evolution.
176 - G. Barro , J. R. Trump , D. C. Koo 2014
We present Keck-I MOSFIRE near-infrared spectroscopy for a sample of 13 compact star-forming galaxies (SFGs) at redshift $2leq z leq2.5$ with star formation rates of SFR$sim$100M$_{odot}$ y$^{-1}$ and masses of log(M/M$_{odot}$)$sim10.8$. Their high integrated gas velocity dispersions of $sigma_{rm{int}}$=230$^{+40}_{-30}$ km s$^{-1}$, as measured from emission lines of H$_{alpha}$ and [OIII], and the resultant M$_{star}-sigma_{rm{int}}$ relation and M$_{star}$$-$M$_{rm{dyn}}$ all match well to those of compact quiescent galaxies at $zsim2$, as measured from stellar absorption lines. Since log(M$_{star}$/M$_{rm{dyn}}$)$=-0.06pm0.2$ dex, these compact SFGs appear to be dynamically relaxed and more evolved, i.e., more depleted in gas and dark matter ($<$13$^{+17}_{-13}$%) than their non-compact SFG counterparts at the same epoch. Without infusion of external gas, depletion timescales are short, less than $sim$300 Myr. This discovery adds another link to our new dynamical chain of evidence that compact SFGs at $zgtrsim2$ are already losing gas to become the immediate progenitors of compact quiescent galaxies by $zsim2$.
In this paper we study a key phase in the formation of massive galaxies: the transition of star forming galaxies into massive (M_stars~10^11 Msun), compact (r_e~1 kpc) quiescent galaxies, which takes place from z~3 to z~1.5. We use HST grism redshift s and extensive photometry in all five 3D-HST/CANDELS fields, more than doubling the area used previously for such studies, and combine these data with Keck MOSFIRE and NIRSPEC spectroscopy. We first confirm that a population of massive, compact, star forming galaxies exists at z~2, using K-band spectroscopy of 25 of these objects at 2.0<z<2.5. They have a median NII/Halpha ratio of 0.6, are highly obscured with SFR(tot)/SFR(Halpha)~10, and have a large range of observed line widths. We infer from the kinematics and spatial distribution of Halpha that the galaxies have rotating disks of ionized gas that are a factor of ~2 more extended than the stellar distribution. By combining measurements of individual galaxies, we find that the kinematics are consistent with a nearly Keplerian fall-off from V_rot~500 km/s at 1 kpc to V_rot~250 km/s at 7 kpc, and that the total mass out to this radius is dominated by the dense stellar component. Next, we study the size and mass evolution of the progenitors of compact massive galaxies. Even though individual galaxies may have had complex histories with periods of compaction and mergers, we show that the population of progenitors likely followed a simple inside-out growth track in the size-mass plane of d(log r_e) ~ 0.3 d(log M_stars). This mode of growth gradually increases the stellar mass within a fixed physical radius, and galaxies quench when they reach a stellar density or velocity dispersion threshold. As shown in other studies, the mode of growth changes after quenching, as dry mergers take the galaxies on a relatively steep track in the size-mass plane.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا