ﻻ يوجد ملخص باللغة العربية
We analyze the asymptotic dynamics of quantum systems resulting from large numbers of iterations of random unitary operations. Although, in general, these quantum operations cannot be diagonalized it is shown that their resulting asymptotic dynamics is described by a diagonalizable superoperator. We prove that this asymptotic dynamics takes place in a typically low dimensional attractor space which is independent of the probability distribution of the unitary operations applied. This vector space is spanned by all eigenvectors of the unitary operations involved which are associated with eigenvalues of unit modulus. Implications for possible asymptotic dynamics of iterated random unitary operations are presented and exemplified in an example involving random controlled-not operations acting on two qubits.
We review the generation of random pure states using a protocol of repeated two qubit gates. We study the dependence of the convergence to states with Haar multipartite entanglement distribution. We investigate the optimal generation of such states i
We study the asymptotic position distribution of general quantum walks on a lattice, including walks with a random coin, which is chosen from step to step by a general Markov chain. In the unitary (i.e., non-random) case, we allow any unitary operato
The realism-based nonlocality (RBN) is a recently introduced measure that differs from the well-known Bells nonlocality. For bipartite states, the RBN concerns how much an element of reality associated with a given observable is affected upon local m
We investigate the asymptotic dynamics of quantum networks under repeated applications of random unitary operations. It is shown that in the asymptotic limit of large numbers of iterations this dynamics is generally governed by a typically low dimens
We study the power of dephasing-covariant operations in the resource theories of coherence and entanglement. These are quantum operations whose actions commute with a projective measurement. In the resource theory of coherence, we find that any two s