ﻻ يوجد ملخص باللغة العربية
We report an extension of the smoothed profile method (SPM)[Y. Nakayama, K. Kim, and R. Yamamoto, Eur. Phys. J. E {bf 26}, 361(2008)], a direct numerical simulation method for calculating the complex modulus of the dispersion of particles, in which we introduce a temporally oscillatory external force into the system. The validity of the method was examined by evaluating the storage $G(omega)$ and loss $G(omega)$ moduli of a system composed of identical spherical particles dispersed in an incompressible Newtonian host fluid at volume fractions of $Phi=0$, 0.41, and 0.51. The moduli were evaluated at several frequencies of shear flow; the shear flow used here has a zigzag profile, as is consistent with the usual periodic boundary conditions.
The non-Newtonian behavior of a monodisperse concentrated dispersion of spherical particles was investigated using a direct numerical simulation method, that takes into account hydrodynamic interactions and thermal fluctuations accurately. Simulation
Motions of fluctuating Brownian particles in an incompressible viscous fluid have been studied by coupled simulations of Brownian particles and host fluid. We calculated the velocity autocorrelation functions of Brownian particles and compared them w
A general methodology is presented to perform direct numerical simulations of particle dispersions in a shear flow with Lees-Edwards periodic boundary conditions. The Navier-Stokes equation is solved in oblique coordinates to resolve the incompatibil
We propose a method for the simulation of particle fragmentation based on the calculation of the energy landscape inside the particle. The landscape of strain energy is calculated in terms of internal stress using the principles of damage and fractur
A hybrid computational method coupling the lattice-Boltzmann (LB) method and a Langevin-dynamics (LD) method is developed to simulate nanoscale particle and polymer (NPP) suspensions in the presence of both thermal fluctuation and long-range many-bod