ﻻ يوجد ملخص باللغة العربية
We use a combination of analytical and numerical techniques to calculate the noise threshold and resource requirements for a linear optical quantum computing scheme based on parity-state encoding. Parity-state encoding is used at the lowest level of code concatenation in order to efficiently correct errors arising from the inherent nondeterminism of two-qubit linear-optical gates. When combined with teleported error-correction (using either a Steane or Golay code) at higher levels of concatenation, the parity-state scheme is found to achieve a saving of approximately three orders of magnitude in resources when compared to a previous scheme, at a cost of a somewhat reduced noise threshold.
We describe a fault-tolerant version of the one-way quantum computer using a cluster state in three spatial dimensions. Topologically protected quantum gates are realized by choosing appropriate boundary conditions on the cluster. We provide equivale
We present a linear optics quantum computation scheme with a greatly reduced cost in resources compared to KLM. The scheme makes use of elements from cluster state computation and achieves comparable resource usage to those schemes while retaining the circuit based approach of KLM.
We review an approach to fault-tolerant holonomic quantum computation on stabilizer codes. We explain its workings as based on adiabatic dragging of the subsystem containing the logical information around suitable loops along which the information remains protected.
We extensively test a recent protocol to demonstrate quantum fault tolerance on three systems: (1) a real-time simulation of five spin qubits coupled to an environment with two-level defects, (2) a real-time simulation of transmon quantum computers,
We consider the problem of fault tolerance in the graph-state model of quantum computation. Using the notion of composable simulations, we provide a simple proof for the existence of an accuracy threshold for graph-state computation by invoking the t