ﻻ يوجد ملخص باللغة العربية
Let a general quantum many-body system at a low temperature adiabatically cross through the vicinity of the systems quantum critical point. We show that the systems temperature is significantly suppressed due to both the entropy majorization theorem in quantum information science and the entropy conservation law in adiabatic processes. We take the one-dimensional transverse-field Ising model and spinless fermion system as concrete examples to show that the inverse temperature might become divergent around their critical points. Since the temperature is a measurable quantity in experiments, our work, therefore, provides a practicable proposal to detect quantum phase transitions.
When a quantum many-particle system exists on a randomly diluted lattice, its intrinsic thermal and quantum fluctuations coexist with geometric fluctuations due to percolation. In this paper, we explore how the interplay of these fluctuations influen
We consider quantum Heisenberg ferro- and antiferromagnets on the square lattice with exchange anisotropy of easy-plane or easy-axis type. The thermodynamics and the critical behaviour of the models are studied by the pure-quantum self-consistent har
In this paper we examine how the predictions of conformal invariance can be widely exploited to overcome the difficulties of the density-matrix renormalization group near quantum critical points. The main idea is to match the set of low-lying energy
A sudden quantum quench of a Bloch band from one topological phase toward another has been shown to exhibit an intimate connection with the notion of a dynamical quantum phase transition (DQPT), where the returning probability of the quenched state t
By using a dual vortex method, we study phases such as superfluid, solids, supersolids and quantum phase transitions in a unified scheme in extended boson Hubbard models at and slightly away from half filling on bipartite optical lattices such as hon