ترغب بنشر مسار تعليمي؟ اضغط هنا

Extensions between finite-dimensional simple modules over a generalized current Lie algebra

190   0   0.0 ( 0 )
 نشر من قبل Ryosuke Kodera
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English
 تأليف Ryosuke Kodera




اسأل ChatGPT حول البحث

We calculate the first extension groups for finite-dimensional simple modules over an arbitrary generalized current Lie algebra, which includes the case of loop Lie algebras and their multivariable analogs.



قيم البحث

اقرأ أيضاً

154 - Kentaro Wada 2017
The deformed current Lie algebra was introduced by the author to study the representation theory of cyclotomic q-Schur algebras at q=1. In this paper, we classify finite dimensional simple modules of deformed current Lie algebras.
The $(q, mathbf{Q})$-current algebra associated with the general linear Lie algebra was introduced by the second author in the study of representation theory of cyclotomic $q$-Schur algebras. In this paper, we study the $(q, mathbf{Q})$-current algeb ra $U_q(mathfrak{sl}_n^{langle mathbf{Q} rangle}[x])$ associated with the special linear Lie algebra $mathfrak{sl}_n$. In particular, we classify finite dimensional simple $U_q(mathfrak{sl}_n^{langle mathbf{Q} rangle}[x])$-modules.
In the present paper, using the technique of localization, we determine the center of the quantum Schr{o}dinger algebra $S_q$ and classify simple modules with finite-dimensional weight spaces over $S_q$, when $q$ is not a root of unity. It turns out that there are four classes of such modules: dense $U_q(mathfrak{sl}_2)$-modules, highest weight modules, lowest weight modules, and twisted modules of highest weight modules.
Let ${mathcal W}_n$ be the Lie algebra of polynomial vector fields. We classify simple weight ${mathcal W}_n$-modules $M$ with finite weight multiplicities. We prove that every such nontrivial module $M$ is either a tensor module or the unique simple submodule in a tensor module associated with the de Rham complex on $mathbb C^n$.
263 - Chun-Ju Lai 2013
We construct a family of homomorphisms between Weyl modules for affine Lie algebras in characteristic p, which supports our conjecture on the strong linkage principle in this context. We also exhibit a large class of reducible Weyl modules beyond level one, for p not necessarily small.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا