ﻻ يوجد ملخص باللغة العربية
We argue that the ratio $S_3 =mathrm{^3_Lambda H} / (mathrm{^3He} times frac{Lambda}{p})$ is a good representation of the local correlation between baryon number and strangeness, and therefore is a valuable tool to probe the nature of the dense matter created in high energy heavy-ion collision: quark gluon plasma or hadron gas. A multiphase transport model (AMPT) plus a dynamical coalescence model is used to elucidate our arguments. We find that AMPT with string melting predicts an increase of $S_3$ with increasing beam energy, and is consistent with experimental data, while AMPT with only hadronic scattering results in a low $S_3$ throughout the energy range from AGS to RHIC, and fails to describe the experimental data.
We derive a simple relation between strangeness neutrality and baryon-strangeness correlations. In heavy-ion collisions, the former is a consequence of quark number conservation of the strong interactions while the latter are sensitive probes of the
The correlation between baryon number and strangeness elucidates the nature of strongly interacting matter, such as that formed transiently in high-energy nuclear collisions. This diagnostic can be extracted theoretically from lattice QCD calculation
The NA61/SHINE experiment at the CERN SPS is performing a uniqe study of the phase diagram of strongly interacting matter by varying collision energy and nuclear mass number of colliding nuclei. In central Pb+Pb collisions the NA49 experiment found s
Recent extensive data from the beam energy scan of the STAR collaboration at BNL-RHIC provide the basis for a detailed update for the universal behavior of the strangeness suppression factor gamma_s as function of the initial entropy density, as prop
Collisions of lead nuclei have been studied at the CERN SPS since 1994. A review is presented of the evidence for the production of deconfined matter, the location of the energy of the onset of deconfinement and the search for the critical point of stronly interacting matter