ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconductivity at high Tc in neodymium-doped 1111-SrFeAsF system

177   0   0.0 ( 0 )
 نشر من قبل Shen Chong
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Polycrystalline Sr1-xNdxFeAsF samples were prepared at various Nd-doping levels using both a stoichiometric mixture of the starting materials and in slight excess amounts of FeAs. Susceptibility and resistivity of the samples were studied down to 4 K revealing a probable coexistence of superconductivity and a magnetic ordering. Temperature dependence of resistivity for all the Nd-doped samples shows the presence of a transition below 15 K most likely originating from the magnetic ordering of Nd moments, while the spin-density-wave anomaly at 175 K survives up to 0.35 Nd-doping. Superconductivity only occurs above 0.40 Nd-doping with onset maximum Tc reaching as high as 52 K.



قيم البحث

اقرأ أيضاً

345 - G. Wu , Y. L. Xie , H. Chen 2009
We synthesized the samples Sr$_{1-x}$Sm$_x$FFeAs with ZrCuSiAs-type structure. These samples were characterized by resistivity and susceptibility. It is found that substitution of rare earth metal for alkaline earth metal in this system suppresses th e anomaly in resistivity and induces superconductivity. Superconductivity at 56 K in nominal composition Sr$_{0.5}$Sm$_{0.5}$FFeAs is realized, indicating that the superconducting transition temperatures in the iron arsenide fluorides can reach as high as that in oxypnictides with the same structure.
81 - H. Rosner , A. Kitaigorodsky , 2001
The layered lithium borocarbide LiBC, isovalent with and structurally similar to the superconductor MgB2, is an insulator due to the modulation within the hexagonal layers (BC vs. B2). We show that hole-doping of LiBC results in Fermi surfaces of B-C p sigma character that couple very strongly to B-C bond stretching modes, precisely the features that lead to superconductivity at Tc = 40 K in MgB2. Comparison of Li{0.5}BC with MgB2 indicates the former to be a prime candidate for electron-phonon coupled superconductivity at substantially higher temperature than in MgB2.
In this review article, we show our recent results relating to the undoped (Ce-free) superconductivity in the electron-doped high-Tc cuprates with the so-called T structure. For an introduction, we briefly mention the characteristics of the electron- doped T-cuprates, including the reduction annealing, conventional phase diagram and undoped superconductivity. Then, our transport and magnetic results and results relating to the superconducting pairing symmetry of the undoped and underdoped T-cuprates are shown. Collaborating spectroscopic and nuclear magnetic resonance results are also shown briefly. It has been found that, through the reduction annealing, a strongly localized state of carriers accompanied by an antiferromagnetic pseudogap in the as-grown samples changes to a metallic and superconducting state with a short-range magnetic order in the reduced superconducting samples. The formation of the short-range magnetic order due to a very small amount of excess oxygen in the reduced superconducting samples suggests that the T-cuprates exhibiting the undoped superconductivity in the parent compounds are regarded as strongly correlated electron systems, as well as the hole-doped high-Tc cuprates. We show our proposed electronic structure model to understand the undoped superconductivity. Finally, unsolved future issues of the T-cuprates are discussed.
Recent experiments have reported the emergence of high temperature superconductivity with critical temperature $T_c$ between 43K and 123K in a potassium doped aromatic hydrocarbon para-Terphenyl or p-Terphenyl. This achievement provides the record fo r the highest Tc in an organic superconductor overcoming the previous record of Tc=38 K in Cs3C60 fulleride. Here we propose that the driving mechanism is the quantum resonance between superconducting gaps near a Lifshitz transition which belongs to the class of Fano resonances called shape resonances. For the case of p-Terphenyl our numerical solutions of the multi gap equation shows that high Tc is driven by tuning the chemical potential by K doping and it appears only in a narrow energy range near a Lifshitz transition. At the maximum critical temperature, Tc=123K, the condensate in the appearing new small Fermi surface pocket is in the BCS-BEC crossover while the Tc drops below 0.3 K where it is in the BEC regime. Finally we predict the experimental results which can support or falsify our proposed mechanism: a) the variation of the isotope coefficient as a function of the critical temperature and b) the variation of the gaps and their ratios 2Delta/Tc as a function of Tc.
The superconducting transition temperatures of high-Tc compounds based on copper, iron, ruthenium and certain organic molecules are discovered to be dependent on bond lengths, ionic valences, and Coulomb coupling between electronic bands in adjacent, spatially separated layers [1]. Optimal transition temperature, denoted as T_c0, is given by the universal expression $k_BT_c0 = e^2 Lambda / ellzeta$; $ell$ is the spacing between interacting charges within the layers, zeta is the distance between interacting layers and Lambda is a universal constant, equal to about twice the reduced electron Compton wavelength (suggesting that Compton scattering plays a role in pairing). Non-optimum compounds in which sample degradation is evident typically exhibit Tc < T_c0. For the 31+ optimum compounds tested, the theoretical and experimental T_c0 agree statistically to within +/- 1.4 K. The elemental high Tc building block comprises two adjacent and spatially separated charge layers; the factor e^2/zeta arises from Coulomb forces between them. The theoretical charge structure representing a room-temperature superconductor is also presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا