ترغب بنشر مسار تعليمي؟ اضغط هنا

A model for structural defects in nanomagnets

314   0   0.0 ( 0 )
 نشر من قبل Winder Alexander Moura-Melo
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A model for describing structural pointlike defects in nanoscaled ferromagnetic materials is presented. Its details are explicitly developed whenever interacting with a vortex-like state comprised in a thin nanodisk. Among others, our model yields results for the vortex equilibrium position under the influence of several defects along with an external magnetic field in good qualitative agreement with experiments. We also discuss how such defects may affect the vortex motion, like its gyrotropic oscillation and dynamical polarization reversal.



قيم البحث

اقرأ أيضاً

124 - M. P. Sarachik , S. McHugh 2010
The magnetization of the prototypical molecular magnet Mn12-acetate exhibits a series of sharp steps at low temperatures due to quantum tunneling at specific resonant values of magnetic field applied along the easy c-axis. An abrupt reversal of the m agnetic moment of such a crystal can also occur as an avalanche, where the spin reversal proceeds along a deflagration front that travels through the sample at subsonic speed. In this article we review experimental results that have been obtained for the ignition temperature and the speed of propagation of magnetic avalanches in molecular nanomagnets. Fits of the data with the theory of magnetic deflagration yield overall qualitative agreement. However, numerical discrepancies indicate that our understanding of these avalanches is incomplete.
When magnets are fashioned into nanoscale elements, they exhibit a wide variety of phenomena replete with rich physics and the lure of tantalizing applications. In this topical review, we discuss some of these phenomena, especially those that have co me to light recently, and highlight their potential applications. We emphasize what drives a phenomenon, what undergirds the dynamics of the system that exhibits the phenomenon, how the dynamics can be manipulated, and what specific features can be harnessed for technological advances. For the sake of balance, we point out both advantages and shortcomings of nanomagnet based devices and systems predicated on the phenomena we discuss. Where possible, we chart out paths for future investigations that can shed new light on an intriguing phenomenon and/or facilitate both traditional and non-traditional applications.
The potential energy surface (PES) of interlayer interaction of twisted bilayer graphene with vacancies in one of the layers is investigated via density functional theory (DFT) calculations with van der Waals corrections. These calculations give a no n-negligible magnitude of PES corrugation of 28 meV per vacancy and barriers for relative sliding of the layers of 7 - 8 meV per vacancy for the moire pattern with coprime indices (2,1) (twist angle 21.8$^circ$). At the same time, using the semiempirical potential fitted to the DFT results, we confirm that twisted bilayer graphene without defects exhibits superlubricity for the same moire pattern and the magnitude of PES corrugation for the infinite bilayer is below the calculation accuracy. Our results imply that atomic-scale defects restrict the superlubricity of 2D layers and can determine static and dynamic tribological properties of these layers in a superlubric state. We also analyze computationally cheap approaches that can be used for modeling of tribological behavior of large-scale systems with defects. The adequacy of using state-of-the-art semiempirical potentials for interlayer interaction and approximations based on the first spatial Fourier harmonics for the description of interaction between graphene layers with defects is discussed.
We study the interplay between the effects of surface anisotropy and dipolar interactions in monodisperse assemblies of nanomagnets with oriented anisotropy. We derive asymptotic formulas for the assembly magnetization taking account of temperature, applied field, core and surface anisotropy, and dipolar inter-particle interactions. We find that the interplay between surface anisotropy and dipolar interactions is well described by the analytical expression of the assembly magnetization derived here: the overall sign of the product of the two parameters governing the surface and the dipolar contributions determines whether intrinsic and collective terms compete or have synergistic effects on the magnetization. This is illustrated by the magnetization curves of $gamma-Fe_{2}O_{3}$ nanoparticles assemblies in the low concentration limit.
Sets of nanomagnets are often utilized to mimic cellular automata in design of nanomagnetic logic devices or frustration and emergence of magnetic charges in artificial spin ice systems. in previous work we showed that unidirectional arrangement of n anomagnets can behave as artificial spin ice, with frustration arising from second neighbor dipolar interaction, and present good magnetic charge mobility due to the low string tension among charges. Here, we present an experimental investigation of magnetic charge population and mobility in function of lateral and longitudinal distance among nanomagnets. Our results corroborate partially the theoretical predictions, performed elsewhere by emergent interaction model, could be useful in nanomagnet logic devices design and brings new insights about the best design for magnetic charge ballistic transport under low external magnetic field with magnetic charge mobility tunning for application in magnetricity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا