ﻻ يوجد ملخص باللغة العربية
A model for describing structural pointlike defects in nanoscaled ferromagnetic materials is presented. Its details are explicitly developed whenever interacting with a vortex-like state comprised in a thin nanodisk. Among others, our model yields results for the vortex equilibrium position under the influence of several defects along with an external magnetic field in good qualitative agreement with experiments. We also discuss how such defects may affect the vortex motion, like its gyrotropic oscillation and dynamical polarization reversal.
The magnetization of the prototypical molecular magnet Mn12-acetate exhibits a series of sharp steps at low temperatures due to quantum tunneling at specific resonant values of magnetic field applied along the easy c-axis. An abrupt reversal of the m
When magnets are fashioned into nanoscale elements, they exhibit a wide variety of phenomena replete with rich physics and the lure of tantalizing applications. In this topical review, we discuss some of these phenomena, especially those that have co
The potential energy surface (PES) of interlayer interaction of twisted bilayer graphene with vacancies in one of the layers is investigated via density functional theory (DFT) calculations with van der Waals corrections. These calculations give a no
We study the interplay between the effects of surface anisotropy and dipolar interactions in monodisperse assemblies of nanomagnets with oriented anisotropy. We derive asymptotic formulas for the assembly magnetization taking account of temperature,
Sets of nanomagnets are often utilized to mimic cellular automata in design of nanomagnetic logic devices or frustration and emergence of magnetic charges in artificial spin ice systems. in previous work we showed that unidirectional arrangement of n