ﻻ يوجد ملخص باللغة العربية
We present a study of the classification of z ~1 extremely red objects (EROs), using a combination of HST/ACS, Spitzer/IRAC, and ground-based images of the COSMOS field. Our sample includes about 5300 EROs with i-Ks>2.45 (AB, equivalently I-Ks=4 in Vega) and Ks<=21.1 (AB). For EROs in our sample, we compute, using the ACS F814W images, their concentration, asymmetry, as well as their Gini coefficient and the second moment of the brightest 20% of their light. Using those morphology parameters and the Spitzer/IRAC [3.6]-[8.0] color, the spectral energy distribution (SED) fitting method, we classify EROs into two classes: old galaxies (OGs) and young, dusty starburst galaxies (DGs). We found that the fraction of OGs and DGs in our sample is similar, about 48 percentages of EROs in our sample are OGs, and 52 percentages of them are DGs. To reduce the redundancy of these three different classification methods, we performed a principal component analysis on the measurements of EROs, and find that morphology parameters and SEDs are efficient in segregating OGs and DGs. The [3.6]-[8.0] color, which depends on reddening, redshift, and photometric accuracy, is difficult to separate EROs around the discriminating line between starburst and elliptical. We investigate the dependence of the fraction of EROs on their observational properties, and the results suggest that DGs become increasingly important at fainter magnitudes, redder colors, and higher redshifts.
We investigate Extremely Red Objects (EROs) using near- and mid-infrared observations in five passbands (3.6 to 24 micron) obtained from the Spitzer Space Telescope, and deep ground-based R and K imaging. The great sensitivity of the IRAC camera allo
In order to find the most extreme dust-hidden high-redshift galaxies, we select 196 extremely red objects in the Ks and IRAC bands (KIEROs, [Ks-4.5um](AB)>1.6) in the 0.06 deg^2 GOODS-N region. This selection avoids the Balmer breaks of galactic spec
We have mapped the submillimetre wavelength continuum emission from the Subaru Deep Field (SDF) at 450 and 850 microns with the Submillimetre Common-User Bolometer Array (SCUBA) detector on the James Clerk Maxwell Telescope (JCMT). The near-IR image
We present photometric analysis and follow-up spectroscopy for a population of extremely red stellar objects extracted from the point-source catalogue of the INT Photometric H-Alpha Survey (IPHAS) of the northern galactic plane. The vast majority of
We have discovered a concentration of extremely red objects (EROs; R-K>6) in the field of the z=2.69 quasar QSO 1213-0017 (UM 485), which is significantly overabundant compared to the field ERO surface density. The optical/near-IR colors of the EROs