ﻻ يوجد ملخص باللغة العربية
Atmospheric flows exhibit selfsimilar fractal spacetime fluctuations manifested as the fractal geometry to global cloud cover pattern and inverse power law form for power spectra of meteorological parameters such as windspeed, temperature, rainfall etc. Inverse power law form for power spectra indicate long-range spacetime correlations or non-local connections and is a signature of selforganised criticality generic to dynamical systems in nature such as river flows, population dynamics, heart beat patterns etc. The author has developed a general systems theory which predicts the observed selforganised criticality as a signature of quantumlike chaos in dynamical systems. The model predictions are (i) The fractal fluctuations can be resolved into an overall logarithmic spiral trajectory with the quasiperiodic Penrose tiling pattern for the internal structure. (ii) The probability distribution represents the power (variance) spectrum for fractal fluctuations and follows universal inverse power law form incorporating the golden mean. Such a result that the additive amplitudes of eddies when squared represent probability distribution is observed in the subatomic dynamics of quantum systems such as the electron or photon. Therefore the irregular or unpredictable fractal fluctuations exhibit quantumlike chaos. (iii) Atmospheric aerosols are held in suspension by the vertical velocity distribution (spectrum). The atmospheric aerosol size spectrum is derived in terms of the universal inverse power law characterizing atmospheric eddy energy spectrum. Model predicted spectrum is in agreement with the following two experimentally determined atmospheric aerosol data sets, (i) SAFARI 2000 CV-580 Aerosol Data, Dry Season 2000 (CARG) (ii) World Data Centre Aerosols data sets for the three stations Ny {AA}lesund, Pallas and Hohenpeissenberg.
Atmospheric flows exhibit fractal fluctuations and inverse power law form for power spectra indicating an eddy continuum structure for the selfsimilar fluctuations. A general systems theory for fractal fluctuations developed by the author is based on
Atmospheric flows exhibit scale-free fractal fluctuations. A general systems theory based on classical statistical physical concepts visualizes the fractal fluctuations to result from the coexistence of eddy fluctuations in an eddy continuum, the lar
The Fluorescence Detector (FD) of the Pierre Auger Observatory provides a nearly calorimetric measurement of the primary particle energy, since the fluorescence light produced is proportional to the energy dissipated by an Extensive Air Shower (EAS)
Atmospheric aerosol nucleation contributes to around half of cloud condensation nuclei (CCN) globally and the nucleated particles can grow larger to impact air quality and consequently human health. Despite the decades efforts, the detailed nucleatio
Atmospheric flows exhibit self-similar fractal space-time fluctuations on all space-time scales in association with inverse power law distribution for power spectra of meteorological parameters such as wind, temperature, etc., and thus implies long-r