ﻻ يوجد ملخص باللغة العربية
Accurate and precise detection of multi-qubit entanglement is key for the experimental development of quantum computation. Traditionally, non-classical correlations between entangled qubits are measured by counting coincidences between single-shot readouts of individual qubits. We report entanglement metrology using a single detection channel with direct access to ensemble-averaged correlations between two superconducting qubits. Following validation and calibration of this joint readout, we demonstrate full quantum tomography on both separable and highly-entangled two-qubit states produced on demand. Using a subset of the measurements required for full tomography, we perform entanglement metrology with ~95% accuracy and ~98% precision despite ~10% fidelity of single measurements. For the highly entangled states, measured Clauser-Horne-Shimony-Holt operators reach a maximum value of 2.61+/-0.04 and entanglement witnesses give a lower bound of ~88% on concurrence. In its present form, this detector will be able to resolve future improvements in the production of two-qubit entanglement and is immediately extendable to 3 or 4 qubits.
We benchmark the decoherence of superconducting qubits to examine the temporal stability of energy-relaxation and dephasing. By collecting statistics during measurements spanning multiple days, we find the mean parameters $overline{T_{1}}$ = 49 $mu$s
We report single-shot readout of a superconducting flux qubit by using a flux-driven Josephson parametric amplifier (JPA). After optimizing the readout power, gain of the JPA and timing of the data acquisition, we observe the Rabi oscillations with a
Superconducting qubits probe environmental defects such as non-equilibrium quasiparticles, an important source of decoherence. We show that hot non-equilibrium quasiparticles, with energies above the superconducting gap, affect qubits differently fro
From a physicists standpoint, the most interesting part of quantum computing research may well be the possibility to probe the boundary between the quantum and the classical worlds. The more macroscopic are the structures involved, the better. So far
We present a systematic study of the phase-coherent dynamics of a superconducting three-Josephson-junction flux qubit. The qubit state is detected with the integrated-pulse method, which is a variant of the pulsed switching DC SQUID method. In this s