ﻻ يوجد ملخص باللغة العربية
Geometric complexity theory (GCT) is an approach to the $P$ vs. $NP$ and related problems. A high level overview of this research plan and the results obtained so far was presented in a series of three lectures in the Institute of Advanced study, Princeton, Feb 9-11, 2009. This article contains the material covered in those lectures after some revision, and gives a mathematical overview of GCT. No background in algebraic geometry, representation theory or quantum groups is assumed.
Geometric complexity theory (GCT) is an approach to the P vs. NP and related problems. This article gives its complexity theoretic overview without assuming any background in algebraic geometry or representation theory.
This is a report on a workshop held August 1 to August 5, 2011 at the Institute for Computational and Experimental Research in Mathematics (ICERM) at Brown University, Providence, Rhode Island, organized by Saugata Basu, Joseph M. Landsberg, and J. M
These are lectures notes for the introductory graduate courses on geometric complexity theory (GCT) in the computer science department, the university of Chicago. Part I consists of the lecture notes for the course given by the first author in the sp
This article gives conjecturally correct algorithms to construct canonical bases of the irreducible polynomial representations and the matrix coordinate rings of the nonstandard quantum groups in GCT4 and GCT7, and canonical bases of the dually paire
We show that most arithmetic circuit lower bounds and relations between lower bounds naturally fit into the representation-theoretic framework suggested by geometric complexity theory (GCT), including: the partial derivatives technique (Nisan-Wigders