ﻻ يوجد ملخص باللغة العربية
We produce a sequence of markings $S_k$ of Thompsons group $F$ within the space ${mathcal G}_n$ of all marked $n$-generator groups so that the sequence $(F,S_k)$ converges to the free group on $n$ generators, for $n geq 3$. In addition, we give presentations for the limits of some other natural (convergent) sequences of markings to consider on $F$ within ${mathcal G}_3$, including $(F,{x_0,x_1,x_n})$ and $(F,{x_0,x_1,x_0^n})$.
We prove that under two natural probabilistic models (studied by Cleary, Elder, Rechnitzer and Taback), the probability that a random pair of elements of Thompsons group $F$ generate the entire group is positive. We also prove that for any $k$-genera
We provide two ways to show that the R. Thompson group $F$ has maximal subgroups of infinite index which do not fix any number in the unit interval under the natural action of $F$ on $(0,1)$, thus solving a problem by D. Savchuk. The first way employ
The definition of graph automatic groups by Kharlampovich, Khoussainov and Miasnikov and its extension to C-graph automatic by Murray Elder and the first author raise the question of whether Thompsons group F is graph automatic. We define a language
It is not known whether Thompsons group F is automatic. With the recent extensions of the notion of an automatic group to graph automatic by Kharlampovich, Khoussainov and Miasnikov and then to C-graph automatic by the authors, a compelling question
We introduce a new method for computing the word length of an element of Thompsons group F with respect to a consecutive generating set of the form X_n={x_0,x_1,...,x_n}, which is a subset of the standard infinite generating set for F. We use this me