ترغب بنشر مسار تعليمي؟ اضغط هنا

Low-frequency Magneto-optical Spectra of Bilayer Bernal Graphene

153   0   0.0 ( 0 )
 نشر من قبل Yu-Huang Chiu
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The low-frequency magneto-optical absorption spectra of bilayer Bernal graphene are studied within the tight-binding model and gradient approximation. The interlayer interactions strongly affect the electronic properties of the Landau levels (LLs), and thus enrich the optical absorption spectra. According to the characteristics of the wave functions, the low-energy LLs can be divided into two groups. This division results in four kinds of optical absorption peaks with complex optical selection rules. Observing the experimental convergent absorption frequencies close to zero magnetic field might be useful and reliable in determining the values of several hopping integrals. The dependence of the optical absorption spectra on the field strength is investigated in detail, and the results differ considerably from those of monolayer graphene.



قيم البحث

اقرأ أيضاً

The low-frequency magneto-optical properties of bilayer Bernal graphene are studied by the tight-binding model with four most important interlayer interactions taken into account. Since the main features of the wave functions are well depicted, the L andau levels can be divided into two groups based on the characteristics of the wave functions. These Landau levels lead to four categories of absorption peaks in the optical absorption spectra. Such absorption peaks own complex optical selection rules and these rules can be reasonably explained by the characteristics of the wave functions. In addition, twin-peak structures, regular frequency-dependent absorption rates and complex field-dependent frequencies are also obtained in this work. The main features of the absorption peaks are very different from those in monolayer graphene and have their origin in the interlayer interactions.
117 - Chiun-Yan Lin , , Ming-Fa Lin 2019
The generalized tight-binding model is developed to investigate the magneto-electronic properties in twisted bilayer graphene system. All the interlayer and intralayer atomic interactions are included in the Moire superlattice. The twisted bilayer gr aphene system is a zero-gap semiconductor with double-degenerate Dirac-cone structures, and saddle-point energy dispersions appearing at low energies for cases of small twisting angles. There exist rich and unique magnetic quantization phenomena, in which many Landau-level subgroups are induced due to specific Moire zone folding through modulating the various stacking angles. The Landau-level spectrum shows hybridized characteristics associated with the those in monolayer, and AA $&$ AB stackings. The complex relations among the different sublattices on the same and different graphene layers are explored in detail.
73 - Bo E. Sernelius 2015
We derive core-level spectra for doped free-standing bilayer graphene. Numerical results are presented for all nine combinations of the doping concentrations $10^{12}rm{cm}^{-2}$, $10^{13}rm{cm}^{-2}$, and $10^{14}rm{cm}^{-2}$ in the two graphene she ets and we compare the results to the reference spectra for monolayer graphene. We furthermore discuss the spectrum of single-particle inter-band and intra-band excitations in the $omega q$-plane, and show how the dispersion curves of the collective modes are modified in the bilayer system.
The existence of strong trigonal warping around the K point for the low energy electronic states in multilayer (N$geq$2) graphene films and graphite is well established. It is responsible for phenomena such as Lifshitz transitions and anisotropic bal listic transport. The absolute orientation of the trigonal warping with respect to the center of the Brillouin zone is however not agreed upon. Here, we use quasiparticle scattering experiments on a gated bilayer graphene/hexagonal boron nitride heterostructure to settle this disagreement. We compare Fourier transforms of scattering interference maps acquired at various energies away from the charge neutrality point with tight-binding-based joint density of states simulations. This comparison enables unambiguous determination of the trigonal warping orientation for bilayer graphene low energy states. Our experimental technique is promising for quasi-directly studying fine features of the band structure of gated two-dimensional materials such as topological transitions, interlayer hybridization, and moire minibands.
We investigate the magnetotransport properties of quasi-free standing epitaxial graphene bilayer on SiC, grown by atmospheric pressure graphitization in Ar, followed by H$_2$ intercalation. At the charge neutrality point the longitudinal resistance s hows an insulating behavior, which follows a temperature dependence consistent with variable range hopping transport in a gapped state. In a perpendicular magnetic field, we observe quantum Hall states (QHSs) both at filling factors ($ u$) multiple of four ($ u=4, 8, 12$), as well as broken valley symmetry QHSs at $ u=0$ and $ u=6$. These results unambiguously show that the quasi-free standing graphene bilayer grown on the Si-face of SiC exhibits Bernal stacking.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا