ﻻ يوجد ملخص باللغة العربية
In high-energy nuclear collisions the degree of thermalization at the partonic level is a key issue. Due to their large mass, heavy quarks and their possible participation in the collective flow of the QCD-medium constitute a powerful probe for thermalization. We present studies with PYTHIA for p+p collisions at the top LHC energy of $sqrt{s}$ = 14 TeV applying the two-particle transverse momentum correlator $<Delta p_{t,1}, Delta p_{t,2}>$ to pairs of heavy-quark hadrons and their semi-leptonic decay products as a function of their relative azimuth. Modifications or even the complete absence of initially existing correlations in Pb+Pb collisions might indicate thermalization at the partonic level.
In high-energy nuclear collisions the degree of thermalization at the partonic level is a key issue. Due to their large mass, heavy-quarks and their participation in the collective flow of the QCD medium constitute a powerful tool to probe thermaliza
In high-energy nuclear collisions at LHC, where a QGP might be created, the degree of thermalization at the partonic level is a key issue. Due to their large mass, heavy quarks are a powerful tool to probe thermalization. We propose to measure azimut
We propose to measure azimuthal correlations of heavy-flavor hadrons to address the status of thermalization at the partonic stage of light quarks and gluons in high-energy nuclear collisions. In particular, we show that hadronic interactions at the
Isotope ratios of fragments produced at mid-rapidity in peripheral and central collisions of 114Cd ions with 92Mo and 98Mo target nuclei at E/A = 50 MeV are compared. Neutron-rich isotopes are preferentially produced in central collisions as compared
The isoscaling properties of isotopically resolved projectile residues from peripheral collisions of 86Kr (25 MeV/nucleon), 64Ni (25 MeV/nucleon) and 136Xe (20 MeV/nucleon) beams on various target pairs are employed to probe the symmetry energy coeff