ﻻ يوجد ملخص باللغة العربية
Carbon nanoscrolls (CNSs) are structures formed by rolling up graphene layers into a papyruslike shape. CNNs have been experimentally produced by different groups. Boron nitride nanoscrolls (BNNSs) are similar structures using boron nitride instead of graphene layers. In this work we report molecular mechanics and molecular dynamics results for the structural and dynamical aspects of BNNS formation. Similarly to CNS, BNNS formation is dominated by two major energy contributions, the increase in the elastic energy and the energetic gain due to van der Waals interactions of the overlapping surface of the rolled layers. The armchair scrolls are the most stable configuration while zigzag scrolls are metastable structures which can be thermally converted to armchair. Chiral scrolls are unstable and tend to evolve to zigzag or armchair configurations depending on their initial geometries. The possible experimental routes to produce BNNSs are also addressed.
Imaging and spectroscopy performed in a low-voltage scanning transmission electron microscope (LV-STEM) are used to characterize the structure and chemical properties of boron-terminated tetravacancies in hexagonal boron nitride (h-BN). We confirm ea
High pressure Raman experiments on Boron Nitride multi-walled nanotubes show that the intensity of the vibrational mode at ~ 1367 cm-1 vanishes at ~ 12 GPa and it does not recover under decompression. In comparison, the high pressure Raman experiment
In this work, we report our results on the geometric and electronic properties of hybrid graphite-like structure made up of silicene and boron nitride (BN) layers. We predict from our calculations that this hybrid bulk system, with alternate layers o
In this study we present a theoretical investigation of structural, electronic and mechanical properties of pentagonal monolayers of carbon (p-graphene), boron nitride (p-B$_{2}$N$_{4}$ and p-B$_{4}$N$_{2}$) and silver azide (p-AgN$_{3}$) by performi
Recently hybridized monolayers consisting of hexagonal boron nitride (h-BN) phases inside graphene layer have been synthesized and shown to be an effective way of opening band gap in graphene monolayers [1]. In this letter, we report an ab initio den