ﻻ يوجد ملخص باللغة العربية
We complete the study of two-loop infrared singularities of scattering amplitudes with an arbitrary number of massive and massless partons in non-abelian gauge theories. To this end, we calculate the universal functions F_1 and f_2, which completely specify the structure of three-parton correlations in the soft anomalous-dimension matrix, at two-loop order in closed analytic form. Both functions are found to be suppressed like O(m^4/s^2) in the limit of small parton masses, in accordance with mass factorization theorems proposed in the literature. On the other hand, they are unsuppressed and diverge logarithmically near the threshold for pair production of two heavy particles. As an application, we calculate the two-loop anomalous-dimension matrix for q q_bar --> t t_bar near threshold and show that it is not diagonal in the s-channel singlet-octet basis.
The infrared divergences of QCD scattering amplitudes can be derived from an anomalous dimension Gamma, which is a matrix in color space and depends on the momenta and masses of the external partons. It has recently been shown that in cases where the
We present complete analytical ${mathcal O}(epsilon^2)$ results on the one-loop amplitudes relevant for the NNLO quark-parton model description of the hadroproduction of heavy quarks as given by the so-called loop-by-loop contributions. All results o
We present the analytic form of the two-loop four-graviton scattering amplitudes in Einstein gravity. To remove ultraviolet divergences we include counterterms quadratic and cubic in the Riemann curvature tensor. The two-loop numerical unitarity appr
We evaluate the two-loop corrections to Bhabha scattering from fermion loops in the context of pure Quantum Electrodynamics. The differential cross section is expressed by a small number of Master Integrals with exact dependence on the fermion masses
We study the asymptotic behaviour of two-loop electroweak corrections at energies Q >> M_W, where logarithms of the type ln(Q/M_W) become dominant. The calculation of the leading and next-to-leading logarithmic terms for massless and massive fermion-