ترغب بنشر مسار تعليمي؟ اضغط هنا

Substrateless metamaterials at mid-infrared frequencies

120   0   0.0 ( 0 )
 نشر من قبل Michele Ortolani
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the fabrication and mid-infrared transmission properties of free-standing thin metal films, periodically patterned with holes at periods down to 2 microns and area of 3x3 mm2. Square grids were fabricated by electron beam lithography and deep-etching techniques and display substrateless holes, with the metal being supported by a patterned dielectric silicon nitride membrane. The mid-infrared transmission spectra of the substrateless grid display extraordinary transmission peaks and resonant absorption lines with a Q-factor up to 22. These spectral features are due to the interaction of the radiation with surface plasmon modes. The high transmittivity and the negative value of the dielectric constant at selected frequencies make our substrateless structures ideal candidates for the fabrication of mid-infrared metamaterials.



قيم البحث

اقرأ أيضاً

We propose novel quantum antennas and metamaterials with strong magnetic response at optical frequencies. Our design is based on the arrangement of natural atoms with only electric dipole transition moments at distances smaller than a wavelength of l ight but much larger than their physical size. In particular, we show that an atomic dimer can serve as a magnetic antenna at its antisymmetric mode to enhance the decay rate of a magnetic transition in its vicinity by several orders of magnitude. Furthermore, we study metasurfaces composed of atomic bilayers with and without cavities and show that they can fully reflect the electric and magnetic fields of light, thus, forming nearly perfect electric/magnetic mirrors. The proposed quantum metamaterials can be fabricated with available state-of-the-art technologies and promise several applications both in classical optics and quantum engineering.
Optical materials with vanishing dielectric permittivity, known as epsilon-near-zero (ENZ) materials, have been shown to possess enhanced nonlinear optical responses in their ENZ region. These strong nonlinear optical properties have been firmly esta blished in homogeneous materials; however, it is as of yet unclear whether metamaterials with effective optical parameters can exhibit a similar enhancement. Here, we probe an optical ENZ metamaterial composed of a subwavelength periodic stack of alternating Ag and SiO$_2$ layers and measure a nonlinear refractive index $n_2 = (1.2 pm 0.1) times 10^{-12}$ m$^2$/W and nonlinear absorption coefficient $beta = (-1.5 pm 0.2) times 10^{-5}$ m/W at its effective zero-permittivity wavelength. The measured $n_2$ is $10^7$ times larger than $n_2$ of fused silica and four times larger than that the $n_2$ of silver. We observe that the nonlinear enhancement in $n_2$ scales as $1/(n_0 mathrm{Re}[n_0])$, where $n_0$ is the linear effective refractive index. As opposed to homogeneous ENZ materials, whose optical properties are dictated by their intrinsic material properties and hence are not widely tunable, the zero-permittivity wavelength of the demonstrated metamaterials may be chosen to lie anywhere within the visible spectrum by selecting the right thicknesses of the sub-wavelength layers. Consequently, our results offer the promise of a means to design metamaterials with large nonlinearities for applications in nanophotonics at any specified optical wavelength.
Arrays of gold split-rings with 50-nm minimum feature size and with an LC resonance at 200-THz frequency (1500-nm wavelength) are fabricated. For normal incidence conditions, they exhibit a pronounced fundamental magnetic mode, arising from a couplin g via the electric component of the incident light. For oblique incidence, a coupling via the magnetic component is demonstrated as well. Moreover, we identify a novel higher-order magnetic resonance at around 370 THz (800-nm wavelength) that evolves out of the Mie resonance for oblique incidence. Comparison with theory delivers good agreement and also shows that the structures allow for a negative magnetic permeability.
Quantum vacuum fluctuations fundamentally limit the precision of optical measurements, such as those in gravitational-wave detectors. Injection of conventional squeezed vacuum can be used to reduce quantum noise in the readout quadrature, but this re duction is at the cost of increasing noise in the orthogonal quadrature. For detectors near the limits imposed by quantum radiation pressure noise (QRPN), both quadratures impact the measurement, and the benefits of conventional squeezing are limited. In this paper, we demonstrate the use of a critically-coupled 16m optical cavity to diminish anti-squeezing at frequencies below 90Hz where it exacerbates QRPN, while preserving beneficial squeezing at higher frequencies. This is called an amplitude filter cavity, and it is useful for avoiding degradation of detector sensitivity at low frequencies. The attenuation from the cavity also provides technical advantages such as mitigating backscatter.
220 - Zheng-Gao Dong , Hui Liu , Tao Li 2008
We demonstrate that left-handed resonance transmission from metallic metamaterial, composed of periodically arranged double rings, can be extended to visible spectrum by introducing an active medium layer as the substrate. The severe ohmic loss insid e metals at optical frequencies is compensated by stimulated emission of radiation in this active system. Due to the resonance amplification mechanism of recently proposed lasing spaser, the left-handed transmission band can be restored up to 610 nm wavelength, in dependence on the gain coefficient of the active layer. Additionally, threshold gains for different scaling levels of the double-ring unit are investigated to evaluate the gain requirement of left-handed transmission restoration at different frequency ranges.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا