ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum theory of Synchronously Pumped type I Optical Parametric Oscillators: characterization of the squeezed supermodes

120   0   0.0 ( 0 )
 نشر من قبل Giuseppe Patera
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Giuseppe Patera




اسأل ChatGPT حول البحث

Quantum models for synchronously pumped type I optical parametric oscillators (SPOPO) are presented. The study of the dynamics of SPOPOs, which typically involves millions of coupled signal longitudinal modes, is significantly simplified when one considers the ?supermodes?, which are independent linear superpositions of all the signal modes diagonalizing the parametric interaction. In terms of these supermodes the SPOPO dynamics becomes that of about a hundred of independent, single mode degenerate OPOs, each of them being a squeezer. One derives a general expression for the squeezing spectrum measured in a balanced homodyne detection experiment, valid for any temporal shape of the local oscillator. Realistic cases are then studied using both analytical and numerical methods: the oscillation threshold is derived, and the spectral and temporal shapes of the squeezed supermodes are characterized.



قيم البحث

اقرأ أيضاً

This thesis is mainly devoted to the study of the quantum properties of optical parametric oscillators (OPOs), which are nowadays the sources of the highest-quality quantum-correlated light, apart from fundamental tools in the classical-optics realm, allowing for the conversion of laser light into virtually all regions of the optical spectrum. Regarding its content, the thesis might seem a bit unusual, because two thirds of it are devoted to a self-contained (though dense) introduction to quantum optics, including the quantum physics of harmonic oscillators, the quantization of the electromagnetic field in an open optical cavity and the detection of its output light, as well as the derivation of the basic model and known properties of OPOs. Hence, all the original results of the thesis are contained in the last third, were it is proven that all OPOs can be understood as multi-mode devices whose quantum properties can be explained in terms of three basic phenomena: bifurcation squeezing, spontaneous symmetry breaking, and pump clamping, which are introduced through simple, yet realistic examples.
Type II optical parametric oscillators are amongst the highest-quality sources of quantum-correlated light. In particular, when pumped above threshold, such devices generate a pair of bright orthogonally-polarized beams with strong continuous-variabl e entanglement. However, these sources are of limited practical use, because the entangled beams emerge with different frequencies and a diffusing phase-difference. It has been proven that the use of an internal wave-plate coupling the modes with orthogonal polarization is capable of locking the frequencies of the emerging beams to half the pump frequency, as well as reducing the phase-difference diffusion, at the expense of reducing the entanglement levels. In this work we characterize theoretically an alternative locking mechanism: the injection of a laser at half the pump frequency. Apart from being less invasive, this method should allow for an easier real-time experimental control. We show that such an injection is capable of generating the desired phase locking between the emerging beams, while still allowing for large levels of entanglement. Moreover, we find an additional region of the parameter space (at relatively large injections) where a mode with well defined polarization is in a highly squeezed vacuum state.
We theoretically and numerically study the quantum dynamics of two degenerate optical parametric oscillators with mutual injections. The cavity mode in the optical coupling path between the two oscillator facets is explicitly considered. Stochastic e quations for the oscillators and mutual injection path based on the positive $P$ representation are derived. The system of two gradually pumped oscillators with out-of-phase mutual injections is simulated, and its quantum state is investigated. When the incoherent loss of the oscillators other than the mutual injections is small, the squeezed quadratic amplitudes $hat{p}$ in the oscillators are positively correlated near the oscillation threshold. It indicates finite quantum correlation, estimated via Gaussian quantum discord, and the entanglement between the intracavity subharmonic fields. When the loss in the injection path is low, each oscillator around the phase transition point forms macroscopic superposition even under a small pump noise. It suggests that the squeezed field stored in the low-loss injection path weakens the decoherence in the oscillators.
The standard process for the production of strongly squeezed states of light is optical parametric amplification (OPA) below threshold in dielectric media such as LiNbO3 or periodically poled KTP. Here, we present a graphical description of squeezed light generation via OPA. It visualizes the interaction between the nonlinear dielectric polarization of the medium and the electromagnetic quantum field. We explicitly focus on the transfer from the fields ground state to a squeezed vacuum state and from a coherent state to a bright squeezed state by the mediums secondorder nonlinearity, respectively. Our pictures visualize the phase dependent amplification and deamplification of quantum uncertainties and give the phase relations between all propagating electro-magnetic fields as well as the internally induced dielectric polarizations. The graphical description can also be used to describe the generation of nonclassical states of light via higherorder effects of the non-linear dielectric polarization such as four-wave mixing and the optical Kerr effect.
Recent experimental results demonstrated the generation of a quantum superpositon (MQS), involving a number of photons in excess of 5x10^4, which showed a high resilience to losses. In order to perform a complete analysis on the effects of de-coheren ce on this multiphoton fields, obtained through the Quantum Injected Optical Parametric Amplifier (QIOPA), we invesigate theoretically the evolution of the Wigner functions associated to these states in lossy conditions. Recognizing the presence of negative regions in the W-representation as an evidence of non-classicality, we focus our analysis on this feature. A close comparison with the MQS based on coherent states allows to identify differences and analogies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا