ترغب بنشر مسار تعليمي؟ اضغط هنا

BLAST: the Redshift Survey

98   0   0.0 ( 0 )
 نشر من قبل Matthew Truch
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) has recently surveyed ~8.7 deg^2 centered on GOODS-South at 250, 350, and 500 microns. In Dye et al. (2009) we presented the catalogue of sources detected at 5-sigma in at least one band in this field and the probable counterparts to these sources in other wavebands. In this paper, we present the results of a redshift survey in which we succeeded in measuring redshifts for 82 of these counterparts. The spectra show that the BLAST counterparts are mostly star-forming galaxies but not extreme ones when compared to those found in the Sloan Digital Sky Survey. Roughly one quarter of the BLAST counterparts contain an active nucleus. We have used the spectroscopic redshifts to carry out a test of the ability of photometric redshift methods to estimate the redshifts of dusty galaxies, showing that the standard methods work well even when a galaxy contains a large amount of dust. We have also investigated the cases where there are two possible counterparts to the BLAST source, finding that in at least half of these there is evidence that the two galaxies are physically associated, either because they are interacting or because they are in the same large-scale structure. Finally, we have made the first direct measurements of the luminosity function in the three BLAST bands. We find strong evolution out to z=1, in the sense that there is a large increase in the space-density of the most luminous galaxies. We have also investigated the evolution of the dust-mass function, finding similar strong evolution in the space-density of the galaxies with the largest dust masses, showing that the luminosity evolution seen in many wavebands is associated with an increase in the reservoir of interstellar matter in galaxies.



قيم البحث

اقرأ أيضاً

182 - Carlos De Breuck 2010
We present results from a comprehensive imaging survey of 70 radio galaxies at redshifts 1<z<5.2 using all three cameras onboard the Spitzer Space Telescope. The resulting spectral energy distributions unambiguously show a stellar population in 46 so urces and hot dust emission associated with the active nucleus in 59. Using a new restframe S_3um/S_1.6um versus S_um/S_3um criterion, we identify 42 sources where the restframe 1.6um emission from the stellar population can be measured. For these radio galaxies, the median stellar mass is high, 2x10^11 M_sun, and remarkably constant within the range 1<z<3. At z>3, there is tentative evidence for a factor of two decrease in stellar mass. This suggests that radio galaxies have assembled the bulk of their stellar mass by z~3, but confirmation by more detailed decomposition of stellar and AGN emission is needed. The restframe 500 MHz radio luminosities are only marginally correlated with stellar mass but are strongly correlated with the restframe 5um hot dust luminosity. This suggests that the radio galaxies have a large range of Eddington ratios. We also present new Very Large Array 4.86 and 8.46 GHz imaging of 14 radio galaxies and find that radio core dominance --- an indicator of jet orientation --- is strongly correlated with hot dust luminosity. While all of our targets were selected as narrow-lined, type 2 AGNs, this result can be understood in the context of orientation-dependent models if there is a continuous distribution of orientations from obscured type 2 to unobscured type 1 AGNs rather than a clear dichotomy. Finally, four radio galaxies have nearby (<6) companions whose mid-IR colors are suggestive of their being AGNs. This may indicate an association between radio galaxy activity and major mergers.
102 - Philip Best 2010
In these proceedings we report on HiZELS, the High-z Emission Line Survey, our successful panoramic narrow-band Campaign Survey using WFCAM on UKIRT to detect and study emission line galaxies at z~1-9. HiZELS employs the H2(S1) narrow-band filter tog ether with custom-made narrow-band filters in the J and H-bands, with the primary aim of delivering large, identically-selected samples of H-alpha emitting galaxies at redshifts of 0.84, 1.47 and 2.23. Comparisons between the luminosity function, the host galaxy properties, the clustering, and the variation with environment of these H-alpha-selected samples are yielding unique constraints on the nature and evolution of star-forming galaxies, across the peak epoch of star-formation activity in the Universe. We provide a summary of the project status, and detail the main scientific results obtained so far: the measurement of the evolution of the cosmic star-formation rate density out to z > 2 using a single star-formation indicator, determination of the morphologies, environments and dust-content of the star-forming galaxies, and a detailed investigation of the evolution of their clustering properties. We also summarise the on-going work and future goals of the project.
A key goal of the Stage IV dark energy experiments Euclid, LSST and WFIRST is to measure the growth of structure with cosmic time from weak lensing analysis over large regions of the sky. Weak lensing cosmology will be challenging: in addition to hig hly accurate galaxy shape measurements, statistically robust and accurate photometric redshift (photo-z) estimates for billions of faint galaxies will be needed in order to reconstruct the three-dimensional matter distribution. Here we present an overview of and initial results from the Complete Calibration of the Color-Redshift Relation (C3R2) survey, designed specifically to calibrate the empirical galaxy color-redshift relation to the Euclid depth. These redshifts will also be important for the calibrations of LSST and WFIRST. The C3R2 survey is obtaining multiplexed observations with Keck (DEIMOS, LRIS, and MOSFIRE), the Gran Telescopio Canarias (GTC; OSIRIS), and the Very Large Telescope (VLT; FORS2 and KMOS) of a targeted sample of galaxies most important for the redshift calibration. We focus spectroscopic efforts on under-sampled regions of galaxy color space identified in previous work in order to minimize the number of spectroscopic redshifts needed to map the color-redshift relation to the required accuracy. Here we present the C3R2 survey strategy and initial results, including the 1283 high confidence redshifts obtained in the 2016A semester and released as Data Release 1.
We investigate the correlation between far-infrared (FIR) and radio luminosities in distant galaxies, a lynchpin of modern astronomy. We use data from the Balloon-borne Large Aperture Submillimetre Telescope (BLAST), Spitzer, the Large Apex BOlometer CamerA (LABOCA), the Very Large Array (VLA) and the Giant Metre-wave Radio Telescope (GMRT) in the Extended Chandra Deep Field South (ECDFS). For a catalogue of BLAST 250-micron-selected galaxies, we re-measure the 70--870-micron flux densities at the positions of their most likely 24-micron counterparts, which have a median [interquartile] redshift of 0.74 [0.25, 1.57]. From these, we determine the monochromatic flux density ratio, q_250 = log_10 (S_250micron / S_1400MHz), and the bolometric equivalent, q_IR. At z ~= 0.6, where our 250-micron filter probes rest-frame 160-micron emission, we find no evolution relative to q_160 for local galaxies. We also stack the FIR and submm images at the positions of 24-micron- and radio-selected galaxies. The difference between q_IR seen for 250-micron- and radio-selected galaxies suggests star formation provides most of the IR luminosity in ~< 100-uJy radio galaxies, but rather less for those in the mJy regime. For the 24-micron sample, the radio spectral index is constant across 0 < z < 3, but q_IR exhibits tentative evidence of a steady decline such that q_IR is proportional to (1+z)^(-0.15 +/- 0.03) - significant evolution, spanning the epoch of galaxy formation, with major implications for techniques that rely on the FIR/radio correlation. We compare with model predictions and speculate that we may be seeing the increase in radio activity that gives rise to the radio background.
We describe the design and data sample from the DEEP2 Galaxy Redshift Survey, the densest and largest precision-redshift survey of galaxies at z ~ 1 completed to date. The survey has conducted a comprehensive census of massive galaxies, their propert ies, environments, and large-scale structure down to absolute magnitude M_B = -20 at z ~ 1 via ~90 nights of observation on the DEIMOS spectrograph at Keck Observatory. DEEP2 covers an area of 2.8 deg^2 divided into four separate fields, observed to a limiting apparent magnitude of R_AB=24.1. Objects with z < 0.7 are rejected based on BRI photometry in three of the four DEEP2 fields, allowing galaxies with z > 0.7 to be targeted ~2.5 times more efficiently than in a purely magnitude-limited sample. Approximately sixty percent of eligible targets are chosen for spectroscopy, yielding nearly 53,000 spectra and more than 38,000 reliable redshift measurements. Most of the targets which fail to yield secure redshifts are blue objects that lie beyond z ~ 1.45. The DEIMOS 1200-line/mm grating used for the survey delivers high spectral resolution (R~6000), accurate and secure redshifts, and unique internal kinematic information. Extensive ancillary data are available in the DEEP2 fields, particularly in the Extended Groth Strip, which has evolved into one of the richest multiwavelength regions on the sky. DEEP2 surpasses other deep precision-redshift surveys at z ~ 1 in terms of galaxy numbers, redshift accuracy, sample number density, and amount of spectral information. We also provide an overview of the scientific highlights of the DEEP2 survey thus far. This paper is intended as a handbook for users of the DEEP2 Data Release 4, which includes all DEEP2 spectra and redshifts, as well as for the publicly-available DEEP2 DEIMOS data reduction pipelines. [Abridged]
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا