ﻻ يوجد ملخص باللغة العربية
We give a class of exact solutions of quartic scalar field theories. These solutions prove to be interesting as are characterized by the production of mass contributions arising from the nonlinear terms while maintaining a wave-like behavior. So, a quartic massless equation has a nonlinear wave solution with a dispersion relation of a massive wave and a quartic scalar theory gets its mass term renormalized in the dispersion relation through a term depending on the coupling and an integration constant. When spontaneous breaking of symmetry is considered, such wave-like solutions show how a mass term with the wrong sign and the nonlinearity give rise to a proper dispersion relation. These latter solutions do not change the sign maintaining the property of the selected value of the equilibrium state. Then, we use these solutions to obtain a quantum field theory for the case of a quartic massless field. We get the propagator from a first order correction showing that is consistent in the limit of a very large coupling. The spectrum of a massless quartic scalar field theory is then provided. From this we can conclude that, for an infinite countable number of exact classical solutions, there exist an infinite number of equivalent quantum field theories that are trivial in the limit of the coupling going to infinity.
We give the exact solution of classical equation of motion of a quartic scalar massless field theory showing that this is massive and is represented by a superposition of free particle solutions with a discrete spectrum. Then we show that this is als
We exactly solve Dyson-Schwinger equations for a massless quartic scalar field theory. n-point functions are computed till n=4 and the exact propagator computed from the two-point function. The spectrum is so obtained, being the same of a harmonic os
We study the exact solutions of quantum integrable model associated with the $C_n$ Lie algebra, with either a periodic or an open one with off-diagonal boundary reflections, by generalizing the nested off-diagonal Bethe ansatz method. Taking the $C_3
In this paper, we investigate the Noether symmetries of a generalized scalar-tensor, Brans-Dicke type cosmological model, in which we consider explicit scalar field dependent couplings to the Ricci scalar, and to the scalar field kinetic energy, resp
A class of the Newell-Whitehead-Segel equations (also known as generalized Fisher equations and Newell-Whitehead equations) is studied with Lie and nonclassical symmetry points of view. The classifications of Lie reduction operators and of regular no