ﻻ يوجد ملخص باللغة العربية
We present a uniform X-ray spectral analysis of eight type-1 active galactic nuclei (AGN) that have been previously observed with relativistically broadened iron emission lines. Utilizing data from the XMM-Newton European Photon Imaging Camera (EPIC-pn) we carefully model the spectral continuum, taking complex intrinsic absorption and emission into account. We then proceed to model the broad Fe K feature in each source with two different accretion disk emission line codes, as well as a self-consistent, ionized accretion disk spectrum convolved with relativistic smearing from the inner disk. Comparing the results, we show that relativistic blurring of the disk emission is required to explain the spectrum in most sources, even when one models the full reflection spectrum from the photoionized disk.
Broad iron emission lines are observed in many accreting systems from black holes in AGN and X-ray binaries to neutron star low-mass X-ray binaries. The origin of the line broadening is often interpreted as due to dynamical broadening and relativisti
Accretion models predict that fluorescence lines broadened by relativistic effects should arise from reflection of X-ray emission onto the inner region of the accretion disc surrounding the central black hole of active galactic nuclei (AGN). The theo
During the September-October 2008 outburst of the accreting millisecond pulsar SAX J1808.4-3658, the source was observed by both Suzaku and XMM-Newton approximately 1 day apart. Spectral analysis reveals a broad relativistic Fe K-alpha emission line
Initial results on the iron K-shell line and reflection component in several AGN observed as part of the Suzaku Guaranteed time program are reviewed. This paper discusses a small sample of Compton-thin Seyferts observed to date with Suzaku; namely MC
The detection of gravitationally redshifted optical emission lines has been reported just for a few active galaxies. In this paper we give a short overview of studies that analyzed or exploited the detection of the gravitational redshift in optical A