ﻻ يوجد ملخص باللغة العربية
The current paradigm for the AGN phenomenon is a central engine that consists of an inflow of material accreting in the form of a disk onto a supermassive black hole. Observations in the UV and optical find high velocity ionized material outflowing from the black hole. We present results from Suzaku and XMM-Newton observations of a sample of intrinsic NAL quasars with high velocity outflows. Our derived values of the intrinsic column densities of the X-ray absorbers are consistent with an outflow scenario in which NAL quasars are viewed at smaller inclination angles than BAL quasars. We find that the distributions of alpha_ox and Dalpha_ox of the NAL quasars of our sample differ significantly from those of BAL quasars and SDSS radio-quiet quasars. The NAL quasars are not significantly absorbed in the X-ray band and the positive values of Dalpha_ox suggest absorption in the UV band. The positive values of Dalpha_ox of the intrinsic NAL quasars can be explained in a geometric scenario where our lines of sight towards the compact X-ray hot coronae of NAL quasars do not traverse the absorbing wind whereas lines of sight towards their UV emitting accretion disks do intercept the outflowing absorbers.
We report the discovery in the Sloan Digital Sky Survey and the SDSS-III Baryon Oscillation Spectroscopic Survey of seventeen broad absorption line (BAL) quasars with high-ionization troughs that include absorption redshifted relative to the quasar r
Broad absorption line (BAL) quasars probe the high velocity gas ejected by luminous accreting black holes. BAL variability timescales place constraints on the size, location, and dynamics of the emitting and absorbing gas near the supermassive black
It is common to assume that all narrow absorption lines (NALs) at extreme high-velocity shifts form in cosmologically intervening gas or galaxies unrelated to quasars. However, previous detailed studies of individual quasars have shown that some NALs
Broad absorption lines (BALs) in quasar spectra identify high velocity outflows that likely exist in all quasars and could play a major role in feedback to galaxy evolution. Studying the variability in these BALs can help us understand the structure,
We conducted radio detection observations at 8.4 GHz for 22 radio-loud broad absorption line (BAL) quasars, selected from the Sloan Digital Sky Survey (SDSS) Third Data Release, by a very-long-baseline interferometry (VLBI) technique. The VLBI instru