ﻻ يوجد ملخص باللغة العربية
High-resolution photoemission spectroscopy and realistic ab-initio calculations have been employed to analyze the onset and progression of d-sp hybridization in Fe impurities deposited on alkali metal films. The interplay between delocalization, mediated by the free-electron environment, and Coulomb interaction among d-electrons gives rise to complex electronic configurations. The multiplet structure of a single Fe atom evolves and gradually dissolves into a quasiparticle peak near the Fermi level with increasing the host electron density. The effective multi-orbital impurity problem within the exact diagonalization scheme describes the whole range of hybridizations.
The CeIn3-xSnx cubic heavy fermion system presents an antiferromagnetic transition at T_N = 10 K, for x = 0, that decreases continuously down to 0 K upon Sn substitution at a critical concentration of x_c ~ 0.65. In the vicinity of T_N -> 0 the syste
In heavy-fermion compounds, f electrons show both itinerant and localized behaviour depending on the external conditions, and the hybridization between localized f electrons and itinerant conduction bands gives rise to their exotic properties like he
We report the electronic and magnetic behaviour of the frustrated triangular metallic antiferromagnet 2H-AgNiO2 in high magnetic fields (54 T) using thermodynamic and transport measurements. Here localized d electrons are arranged on an antiferromagn
We establish that a doping-driven first-order metal-to-metal transition, from a pseudogap metal to Fermi Liquid, can occur in correlated quantum materials. Our result is based on the exact Dynamical Mean Field Theory solution of the Dimer Hubbard Mod
We report on systematic investigation of hot carrier dynamics in Ti4O7 by ultrafast time-resolved optical reflectivity. We find the transient indication for its two-step insulator-metal (I-M) transition, in which two phase transitions occur from long