ﻻ يوجد ملخص باللغة العربية
We discuss the possibility of obtaining a non-abelian discrete flavor symmetry from an underlying continuous, possibly gauged, flavor symmetry SU(2) or SU(3) through spontaneous symmetry breaking. We consider all possible cases, where the continuous symmetry is broken by small representations. Small representations are these which couple at leading order to the Standard Model fermions transforming as two- or three-dimensional representations of the flavor group. We find that, given this limited representation content, the only non-abelian discrete group which can arise as a residual symmetry is the quaternion group D_2.
In [1] it was shown how the flavor symmetry A4 (or S4) can arise if the three fermion generations are taken to live on the fixed points of a specific 2-dimensional orbifold. The flavor symmetry is a remnant of the 6-dimensional Poincare symmetry, aft
We study the modular symmetry in magnetized D-brane models on $T^2$. Non-Abelian flavor symmetry $D_4$ in the model with magnetic flux $M=2$ (in a certain unit) is a subgroup of the modular symmetry. We also study the modular symmetry in heterotic or
We investigate a gauge theory realization of non-Abelian discrete flavor symmetries and apply the gauge enhancement mechanism in heterotic orbifold models to field-theoretical model building. Several phenomenologically interesting non-Abelian discret
We study discrete flavor symmetries of the models based on a ten-dimensional supersymmetric Yang-Mills (10D SYM) theory compactified on magnetized tori. We assume non-vanishing non-factorizable fluxes as well as the orbifold projections. These setups
We review pedagogically non-Abelian discrete groups, which play an important role in the particle physics. We show group-theoretical aspects for many concrete groups, such as representations, their tensor products. We explain how to derive, conjugacy