ترغب بنشر مسار تعليمي؟ اضغط هنا

SBS 0335-052E+W: deep VLT/FORS+UVES spectroscopy of the pair of the lowest-metallicity blue compact dwarf galaxies

129   0   0.0 ( 0 )
 نشر من قبل Yuri Izotov I.
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

(abridged) We present deep archival VLT/FORS1+UVES spectroscopic observations of the system of two blue compact dwarf (BCD) galaxies SBS 0335-052E and SBS 0335-052W. Our aim is to derive element abundances in different HII regions of this unique system of galaxies and to study spatial abundance variations. We determine abundances of helium, nitrogen, oxygen, neon, sulfur, chlorine, argon and iron. The oxygen abundance in the brighter eastern galaxy varies in the range 7.11 to 7.32 in different HII regions supporting previous findings and suggesting the presence of oxygen abundance variations on spatial scales of ~1-2 kpc. The oxygen abundance in the brightest region No.1 of SBS 0335-052W is 7.22+/-0.07, consistent with previous determinations.Three other HII regions are much more metal-poor with an unprecedently low oxygen abundance of 12+logO/H=7.01+/-0.07 (region No.2), 6.98+/-0.06 (region No.3), and 6.86+/-0.14 (region No.4). These are the lowest oxygen abundances ever derived in emission-line galaxies. Helium abundances derived for the brightest HII regions of both galaxies are mutually consistent. We derive weighted mean He mass fractions of 0.2485+/-0.0012 and 0.2514+/-0.0012 for two different sets of HeI emissivities. The N/O abundance ratio in both galaxies is slightly higher than that derived for other BCDs with 12+logO/H<7.6. This implies that the N/O in extremely metal-deficient galaxies could increase with decreasing metallicity.



قيم البحث

اقرأ أيضاً

The results of deep long-slit spectroscopy of the extremely low-metallicity blue compact dwarf (BCD) galaxy SBS 0335-052 are presented. Down to intensity levels of 10^{-3 ... -4} of Hbeta, unprecedented for spectroscopy of extra-galactic giant H II r egions, we detect numerous weak permitted and forbidden nebular lines in the brightest part of the galaxy. With varying degrees of confidence, the detections include lines of high-ionization ions like Fe^{4+} -Fe^{6+}, implying very hard ionizing radiation. Two broad emission features, possibly from Wolf-Rayet stars, and stellar He II 4200 absorption are seen in the same region. The large spatial extent of He II 4686 emission (implying the presence of sufficient ionizing photons with energies above 54 eV) and the spatial distribution of the electron temperature suggest that at least some part of the hard radiation is associated with shocks. Extended Halpha emission is detected over ~ 6 - 8 kpc, a much larger area than in previous studies, suggesting that hot ionized gas is spread out far away from the central ionizing clusters. This shows that nebular line and continuous emission can significantly modify the colours of these extended regions and must be taken into account in studies of the underlying stellar population.
63 - Y. Izotov 2006
We present two-dimensional spectroscopy of the extremely metal-deficient blue compact dwarf (BCD) galaxy SBS 0335-052E aiming to studyphysical conditions, element abundances and kinematical properties of the ionised gas in this galaxy. Observations w ere obtained in the spectral range 3620-9400A with the imaging spectrograph GIRAFFE installed on the UT2 of the Very Large Telescope (VLT). These observations are the first ones carried out so far with GIRAFFE in the ARGUS mode which allows to obtain simultaneously 308 spectra covering a 11.4x7.3 region. We produced images of SBS 0335-052E in the continuum and in emission lines of different stages of excitation. We find that while the maximum of emission in the majority of lines, including the strong lines Hbeta 4861A, Halpha 6563A, [OIII] 4363,5007A, [OII] 3726,3729A, coincides with the youngest south-eastern star clusters 1 and 2, the emission of HeII 4686A line is offset to the more evolved north-west clusters 4,5. This suggests that hard ionising radiation responsible for the HeII 4686A emission is not related to the most massive youngest stars, but rather is connected with fast radiative shocks. This conclusion is supported by the kinematical properties of the ionised gas from the different emission lines as the velocity dispersion in the HeII 4686A line is systematically higher, by ~50%-100%, than that in other lines. The variations of the emission line profiles suggest the presence of an ionised gas outflow in the direction perpendicular to the galaxy disk. (abridged)
97 - P. Papaderos 2006
We present 3.6m ESO telescope spectroscopic observations of the system of the two blue compact dwarf galaxies SBS 0335-052W and SBS 0335-052E. The oxygen abundance in SBS 0335-052W is 12 + log O/H = 7.13 +/- 0.08, confirming that this galaxy is the m ost metal-deficient emission-line galaxy known. We find that the oxygen abundance in SBS 0335-052E varies from region to region in the range from 7.20 to 7.31, suggesting the presence of an abundance gradient over a spatial scale of 1 kpc. Signatures of early carbon-type Wolf-Rayet stars are detected in cluster 3 of SBS 0335-052E, corresponding to the emission of three to eighteen WC4 stars, depending on the adopted luminosity of a single WC4 star in the CIV 4658 emission line.
120 - Y. Izotov 2001
The results of the N/O abundance determination in a sample of low-metallicity blue compact dwarf (BCD) galaxies based on new spectroscopic observations with large telescopes (Keck, VLT, MMT, 4m KPNO) are presented. We show that the N/O abundance rati o is constant at lowest metallicities < Zsun/20, confirming previous findings and strongly supporting the origin of nitrogen as a primary element.
141 - Roger L. Griffith 2011
We report two new low metallicity blue compact dwarf galaxies (BCDs), WISEP J080103.93+264053.9 (hereafter W0801+26) and WISEP J170233.53+180306.4 (hereafter W1702+18), discovered using the Wide-field Infrared Survey Explorer (WISE). We identified th ese two BCDs from their extremely red colors at mid-infrared wavelengths, and obtained follow-up optical spectroscopy using the Low Resolution Imaging Spectrometer on Keck I. The mid-infrared properties of these two sources are similar to the well studied, extremely low metallicity galaxy SBS 0335-052E. We determine metallicities of 12 + log(O/H) = 7.75 and 7.63 for W0801+26 and W1702+18, respectively, placing them amongst a very small group of very metal deficient galaxies (Z < 1/10 Zsun). Their > 300 Angstrom Hbeta equivalent widths, similar to SBS 0335-052E, imply the existence of young (< 5 Myr) star forming regions. We measure star formation rates of 2.6 and 10.9 Msun/yr for W0801+26 and W1702+18, respectively. These BCDs, showing recent star formation activity in extremely low metallicity environments, provide new laboratories for studying star formation in extreme conditions and are low-redshift analogs of the first generation of galaxies to form in the universe. Using the all-sky WISE survey, we discuss a new method to identify similar star forming, low metallicity BCDs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا