ترغب بنشر مسار تعليمي؟ اضغط هنا

Monitoring Supergiant Fast X-ray Transients with Swift. Results from the first year

165   0   0.0 ( 0 )
 نشر من قبل Patrizia Romano
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Swift has allowed the possibility to give Supergiant Fast X-ray Transients (SFXTs), the new class of High Mass X-ray Binaries discovered by INTEGRAL, non serendipitous attention throughout all phases of their life. We present our results based on the first year of intense Swift monitoring of four SFXTs, IGR J16479-4514, XTE J1739-302, IGR J17544-2619 and AX J1841.0-0536. We obtain the first assessment of how long each source spends in each state using a systematic monitoring with a sensitive instrument. The duty-cycle of inactivity is 17, 28, 39, 55% (5% uncertainty), for IGR J16479-4514, AX J1841.0-0536, XTE J1739-302, and IGR J17544-2619, respectively, so that true quiescence is a rare state. This demonstrates that these transients accrete matter throughout their life at different rates. AX J1841.0-0536 is the only source which has not undergone a bright outburst during our campaign. Although individual sources behave somewhat differently, common X-ray characteristics of this class are emerging such as outburst lengths well in excess of hours, with a multiple peaked structure. A high dynamic range (including bright outbursts) of 4 orders of magnitude has been observed. We performed out-of-outburst intensity-based spectroscopy. Spectral fits with an absorbed blackbody always result in blackbody radii of a few hundred meters, consistent with being emitted from a small portion of the neutron star surface, very likely the neutron star polar caps. We also present the UVOT data of these sources. (Abridged)



قيم البحث

اقرأ أيضاً

Swift is the only observatory which, due to its unique fast-slewing capability and broad-band energy coverage, can detect outbursts from Supergiant Fast X-ray Transients (SFXTs) from the very beginning and study their evolution panchromatically. Than ks to its flexible observing scheduling, which makes monitoring cost-effective, Swift has also performed a campaign that covers all phases of the lives of SFXTs with a high sensitivity in the soft X-ray regime, where most SFXTs had not been observed before. Our continued effort at monitorning SFXTs with 2-3 observations per week (1-2 ks) with the Swift X-Ray Telescope (XRT) over their entire visibility period has just finished its second year. We report on our findings on the long-term properties of SFXTs, their duty cycle, and the new outbursts caught by Swift during the second year.
124 - P. Romano 2010
For the first time, Swift is giving us the opportunity to study supergiant fast X-ray transients (SFXTs) throughout all phases of their life: outbursts, intermediate level, and quiescence. We present our intense monitoring of four SFXTs, observed 2-3 times per week since October 2007. We find that, unexpectedly, SFXTs spend most of their time in an intermediate level of accretion ($L_{X}sim 10^{33-34} $ erg s$^{-1}$), characterized by rich flaring activity. We present an overview of our investigation on SFXTs with Swift, the key results of our Project. We highlight the unique contribution Swift is giving to this field, both in terms of outburst observations and through a systematic monitoring.
171 - L. Sidoli , L. Ducci (3 2010
We report here on the most recent results obtained on a new class of High Mass X-ray Binaries, the Supergiant Fast X-ray Transients. Since October 2007, we have been performing a monitoring campaign with Swift of four SFXTs (IGRJ17544-2916, XTEJ1739- 302, IGRJ16479-4514 and the X-ray pulsar AXJ1841.0-0536) for about 1-2 ks, 2-3 times per week, allowing us to derive the previously unknown long term properties of this new class of sources (their duty cycles, spectral properties in outbursts and out-of-outbursts, temporal behaviour). We also report here on additional Swift observations of two SFXTs which are not part of the monitoring: IGRJ18483-0311 (observed with Swift/XRT during a whole orbital cycle) and SAXJ1818.6-1703 (observed for the first time simultaneously in the energy range 0.3-100 keV during a bright flare).
We present two years of intense Swift monitoring of three SFXTs, IGR J16479-4514, XTE J1739-302, and IGR J17544-2619 (since October 2007). Out-of-outburst intensity-based X-ray (0.3-10keV) spectroscopy yields absorbed power laws with by hard photon i ndices (G~1-2). Their outburst broad-band (0.3-150 keV) spectra can be fit well with models typically used to describe the X-ray emission from accreting NSs in HMXBs. We assess how long each source spends in each state using a systematic monitoring with a sensitive instrument. These sources spend 3-5% of the total in bright outbursts. The most probable flux is 1-2E-11 erg cm^{-2} s^{-1} (2-10 keV, unabsorbed), corresponding to luminosities in the order of a few 10^{33} to 10^{34} erg s^{-1} (two orders of magnitude lower than the bright outbursts). The duty-cycle of inactivity is 19, 39, 55%, for IGR J16479-4514, XTE J1739-302, and IGR J17544-2619, respectively. We present a complete list of BAT on-board detections further confirming the continued activity of these sources. This demonstrates that true quiescence is a rare state, and that these transients accrete matter throughout their life at different rates. X-ray variability is observed at all timescales and intensities we can probe. Superimposed on the day-to-day variability is intra-day flaring which involves variations up to one order of magnitude that can occur down to timescales as short as ~1ks, and whichcan be explained by the accretion of single clumps composing the donor wind with masses M_cl~0.3-2x10^{19} g. (Abridged)
We present an overview of our Supergiant Fast X-ray Transients (SFXT) project, that started in 2007, by highlighting the unique observational contribution Swift is giving to this exciting new field. By means of outburst detection with Swift/BAT and f ollow-up with Swift/XRT, we demonstrated that while the brightest phase of the outburst only lasts a few hours, further significant activity is observed at lower fluxes for a considerably longer (weeks) time. After intense monitoring with Swift/XRT, we now have a firm estimate of the time SFXTs spend in each phase. The 4 SFXTs we monitored for 1-2 years spend between 3 and 5 % of the time in bright outbursts. The most most probable flux level at which a random observation will find these sources, when detected, is F(2-10 keV) ~ 1-2E-11 erg cm^{-2} s^{-1} (unabsorbed), corresponding to luminosities of a few 10^{33} to a few 10^{34} erg s^{-1}. Finally, the duty-cycle of inactivity ranges between 19 and 55 %.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا