ﻻ يوجد ملخص باللغة العربية
Vortices are known to play a key role in the dynamics of the quantum trajectories defined within the framework of the de Broglie-Bohm formalism of quantum mechanics. It has been rigourously proved that the motion of a vortex in the associated velocity field can induce chaos in these trajectories, and numerical studies have explored the rich variety of behaviors that due to their influence can be observed. In this paper, we go one step further and show how the theory of dynamical systems can be used to construct a general and systematic classification of such dynamical behaviors. This should contribute to establish some firm grounds on which the studies on the intrinsic stochasticity of Bohms quantum trajectories can be based. An application to the two dimensional isotropic harmonic oscillator is presented as an illustration.
Bohmian mechanics is an interpretation of quantum mechanics that describes the motion of quantum particles with an ensemble of deterministic trajectories. Several attempts have been made to utilize Bohmian trajectories as a computational tool to simu
We derive Bohms trajectories from Bells beables for arbitrary bipartite systems composed by dissipative noninteracting harmonic oscillators at finite temperature. As an application of our result, we calculate the Bohmian trajectories of particles des
A prepotential approach to constructing the quantum systems with dynamical symmetry is proposed. As applications, we derive generalizations of the hydrogen atom and harmonic oscillator, which can be regarded as the systems with position-dependent mas
Bohmian mechanics is a causal interpretation of quantum mechanics in which particles describe trajectories guided by the wave function. The dynamics in the vicinity of nodes of the wave function, usually called vortices, is regular if they are at res
We propose to compute approximations to general invariant sets in dynamical systems by minimizing the distance between an appropriately selected finite set of points and its image under the dynamics. We demonstrate, through computational experiments