ﻻ يوجد ملخص باللغة العربية
We calculate the dynamic structure factor S(q,omega) of a one-dimensional (1D) interacting Bose gas confined in a harmonic trap. The effective interaction depends on the strength of the confinement enforcing the 1D motion of atoms; interaction may be further enhanced by superimposing an optical lattice on the trap potential. In the compressible state, we find that the smooth variation of the gas density around the trap center leads to softening of the singular behavior of S(q,omega) at Lieb-1 mode compared to the behavior predicted for homogeneous 1D systems. Nevertheless, the density-averaged response remains a non-analytic function of q and omega at Lieb-1 mode in the limit of weak trap confinement. The exponent of the power-law non-analyticity is modified due to the inhomogeneity in a universal way, and thus, bears unambiguously the information about the (homogeneous) Lieb-Liniger model. A strong optical lattice causes formation of Mott phases. Deep in the Mott regime, we predict a semi-circular peak in S(q,omega) centered at the on-site repulsion energy, omega=U. Similar peaks of smaller amplitudes exist at multiples of U as well. We explain the suppression of the dynamic response with entering into the Mott regime, observed recently by D. Clement et al., Phys. Rev. Lett. v. 102, p. 155301 (2009), based on an f-sum rule for the Bose-Hubbard model.
We investigate the spin-2 chain model corresponding to the small hopping limit of the spin-2 Bose-Hubbard model using density-matrix renormalization-group and time-evolution techniques. We calculate both static correlation functions and the dynamic s
We consider identical quantum bosons with weak contact interactions in a two-dimensional isotropic harmonic trap, and focus on states at the Lowest Landau Level (LLL). At linear order in the coupling parameter $g$, we exploit the rich algebraic struc
As dipolar gases become more readily accessible in experiment there is a need to develop a comprehensive theoretical framework of the few-body physics of these systems. Here, we extend the coupled-pair approach developed for the unitary two-component
We establish a new geometric wave function that combined with a variational principle efficiently describes a system of bosons interacting in a one-dimensional trap. By means of a a combination of the exact wave function solution for contact interact
We consider identical quantum bosons with weak contact interactions in a two-dimensional isotropic harmonic trap. When the interactions are turned off, the energy levels are equidistant and highly degenerate. At linear order in the coupling parameter