Single trapped ions are ideal systems in which to test atomic physics at high precision: they are effectively isolated atoms held at rest and largely free from perturbing interactions. This thesis describes several projects developed to study the structure of singly-ionized barium and more fundamental physics. First, we describe a spin-dependent electron-shelving scheme that allows us to perform single ion electron spin resonance experiments in both the ground 6S_{1/2} and metastable 5D_{3/2} states at precision levels of 10^{-5}. We employ this technique to measure the ratio of off-resonant light shifts (or ac-Stark effect) in these states to a precision of 10^{-3} at two different wavelengths. These results constitute a new high precision test of heavy-atom atomic theory. Such experimental tests in Ba+ are in high demand since knowledge of key dipole matrix elements is currently limited to about 5%. Ba+ has recently been the subject of theoretical interest towards a test of atomic parity violation for which knowledge of dipole matrix elements is an important prerequisite. We summarize this parity violation experimental concept and describe new ideas. (continued...)