ﻻ يوجد ملخص باللغة العربية
Designed as a high-sensitivity gamma-ray observatory, the Fermi Large Area Telescope is also an electron detector with a large acceptance exceeding 2 sq-mt sr at 300 GeV. Building on the gamma-ray analysis, we have developed an efficient electron detection strategy which provides sufficient background rejection for measurement of the steeply-falling electron spectrum up to 1 TeV. Our high precision data show that the electron spectrum falls with energy as E^(-3.0) and does not exhibit prominent spectral features
We present a measurement of the cosmic-ray electron+positron spectrum between 7 GeV and 2 TeV performed with almost seven years of data collected with the Fermi Large Area Telescope. We find that the spectrum is well fit by a broken power law with a
We measured separate cosmic-ray electron and positron spectra with the Fermi Large Area Telescope. Because the instrument does not have an onboard magnet, we distinguish the two species by exploiting the Earths shadow, which is offset in opposite dir
Extended results on the cosmic-ray electron + positron spectrum from 11 GeV to 4.8 TeV are presented based on observations with the Calorimetric Electron Telescope (CALET) on the International Space Station utilizing the data up to November 2017. The
The Large Area Telescope onboard the Fermi Gamma-ray Space Telescope has collected the largest ever sample of high-energy cosmic-ray electron and positron events. Possible features in their energy spectrum could be a signature of the presence of near
First results of a cosmic-ray electron + positron spectrum, from 10 GeV to 3 TeV, is presented based upon observations with the CALET instrument on the ISS starting in October, 2015. Nearly a half million electron + positron events are included in th