ﻻ يوجد ملخص باللغة العربية
The Imaging Atmospheric Cherenkov Telescope MAGIC I has recently been extended to a stereoscopic system by adding a second 17 m telescope, MAGIC-II. One of the major improvements of the second telescope is an improved camera. The Camera Control Program is embedded in the telescope control software as an independent subsystem. The Camera Control Program is an effective software to monitor and control the camera values and their settings and is written in the visual programming language LabVIEW. The two main parts, the Central Variables File, which stores all information of the pixel and other camera parameters, and the Comm Control Routine, which controls changes in possible settings, provide a reliable operation. A safety routine protects the camera from misuse by accidental commands, from bad weather conditions and from hardware errors by automatic reactions.
The MAGIC 17m diameter Cherenkov telescope will be upgraded with a second telescope within the year 2007. The camera of MAGIC-II will include several new features compared to the MAGIC-I camera. Photomultipliers with the highest available photon coll
With the commissioning of the second MAGIC gamma-ray Cherenkov telescope situated close to MAGIC-I, the standard analysis package of the MAGIC collaboration, MARS, has been upgraded in order to perform the stereoscopic reconstruction of the detected
MAGIC comprises two 17m diameter IACTs to be operated in stereo mode. Currently we are commissioning the second telescope, MAGIC II. The camera of the second telescope has been equipped with 1039 pixels of 0.1-degree diameter. Always seven pixels are
A status report of the second phase of the MAGIC ground-based gamma-ray facility (as of October 2009) is presented. MAGIC became recently a stereoscopic Cherenkov observatory with the inauguration of its second telescope, MAGIC-II, which is currently approaching the end of its commissioning stage.
The autonomous control system of PoGOLite is presented. PoGOLite is a balloon borne X-ray polarimeter designed to observe point sources. To obtain scientific data with optimal efficiency, independent of the ground connection, the payload control syst