ترغب بنشر مسار تعليمي؟ اضغط هنا

General combination rules for qualitative and quantitative beliefs

111   0   0.0 ( 0 )
 نشر من قبل Arnaud Martin
 تاريخ النشر 2009
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Arnaud Martin




اسأل ChatGPT حول البحث

Martin and Osswald cite{Martin07} have recently proposed many generalizations of combination rules on quantitative beliefs in order to manage the conflict and to consider the specificity of the responses of the experts. Since the experts express themselves usually in natural language with linguistic labels, Smarandache and Dezert cite{Li07} have introduced a mathematical framework for dealing directly also with qualitative beliefs. In this paper we recall some element of our previous works and propose the new combination rules, developed for the fusion of both qualitative or quantitative beliefs.



قيم البحث

اقرأ أيضاً

106 - Xinde Li 2007
This paper deals with enriched qualitative belief functions for reasoning under uncertainty and for combining information expressed in natural language through linguistic labels. In this work, two possible enrichments (quantitative and/or qualitative ) of linguistic labels are considered and operators (addition, multiplication, division, etc) for dealing with them are proposed and explained. We denote them $qe$-operators, $qe$ standing for qualitative-enriched operators. These operators can be seen as a direct extension of the classical qualitative operators ($q$-operators) proposed recently in the Dezert-Smarandache Theory of plausible and paradoxist reasoning (DSmT). $q$-operators are also justified in details in this paper. The quantitative enrichment of linguistic label is a numerical supporting degree in $[0,infty)$, while the qualitative enrichment takes its values in a finite ordered set of linguistic values. Quantitative enrichment is less precise than qualitative enrichment, but it is expected more close with what human experts can easily provide when expressing linguistic labels with supporting degrees. Two simple examples are given to show how the fusion of qualitative-enriched belief assignments can be done.
The activity of a sparse network of leaky integrate-and-fire neurons is carefully revisited with reference to a regime of a bona-fide asynchronous dynamics. The study is preceded by a finite-size scaling analysis, carried out to identify a setup wher e collective synchronization is negligible. The comparison between quenched and annealed networks reveals the emergence of substantial differences when the coupling strength is increased, via a scenario somehow reminiscent of a phase transition. For sufficiently strong synaptic coupling, quenched networks exhibit a highly bursting neural activity, well reproduced by a self-consistent approach, based on the assumption that the input synaptic current is the superposition of independent renewal processes. The distribution of interspike intervals turns out to be relatively long-tailed; a crucial feature required for the self-sustainment of the bursting activity in a regime where neurons operate on average (much) below threshold. A semi-quantitative analogy with Ornstein-Uhlenbeck processes helps validating this interpretation. Finally, an alternative explanation in terms of Poisson processes is offered under the additional assumption of mutual correlations among excitatory and inhibitory spikes.
129 - Michael P. Wellman 2013
Bayesian networks provide a probabilistic semantics for qualitative assertions about likelihood. A qualitative reasoner based on an algebra over these assertions can derive further conclusions about the influence of actions. While the conclusions are much weaker than those computed from complete probability distributions, they are still valuable for suggesting potential actions, eliminating obviously inferior plans, identifying important tradeoffs, and explaining probabilistic models.
In spatially located, large scale systems, time and space dynamics interact and drives the behaviour. Examples of such systems can be found in many smart city applications and Cyber-Physical Systems. In this paper we present the Signal Spatio-Tempora l Logic (SSTL), a modal logic that can be used to specify spatio-temporal properties of linear time and discrete space models. The logic is equipped with a Boolean and a quantitative semantics for which efficient monitoring algorithms have been developed. As such, it is suitable for real-time verification of both white box and black box complex systems. These algorithms can also be combined with stochastic model checking routines. SSTL combines the until temporal modality with two spatial modalities, one expressing that something is true somewhere nearby and the other capturing the notion of being surrounded by a region that satisfies a given spatio-temporal property. The monitoring algorithms are implemented in an open source Java tool. We illustrate the use of SSTL analysing the formation of patterns in a Turing Reaction-Diffusion system and spatio-temporal aspects of a large bike-sharing system.
417 - Michael P. Wellman 2013
Functional dependencies restrict the potential interactions among variables connected in a probabilistic network. This restriction can be exploited in qualitative probabilistic reasoning by introducing deterministic variables and modifying the infere nce rules to produce stronger conclusions in the presence of functional relations. I describe how to accomplish these modifications in qualitative probabilistic networks by exhibiting the update procedures for graphical transformations involving probabilistic and deterministic variables and combinations. A simple example demonstrates that the augmented scheme can reduce qualitative ambiguity that would arise without the special treatment of functional dependency. Analysis of qualitative synergy reveals that new higher-order relations are required to reason effectively about synergistic interactions among deterministic variables.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا