ترغب بنشر مسار تعليمي؟ اضغط هنا

Monte Carlo Study on the Large Imaging Air Cherenkov Telescopes for >10 GeV gamma ray astronomy

274   0   0.0 ( 0 )
 نشر من قبل Pratik Majumdar
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Imaging Air Cherenkov Telescopes (IACTs), like, HESS, MAGIC and VERITAS well demonstrated their performances by showing many exciting results at very high energy gamma ray domain, mainly between 100 GeV and 10 TeV. It is important to investigate how much we can improve the sensitivity in this energy range, but it is also important to expand the energy coverage and sensitivity towards new domains, the lower and higher energies, by extending this IACT techniques. For this purpose, we have carried out the optimization of the array of large IACTs assuming with new technologies, advanced photodetectors, and Ultra Fast readout system by Monte Carlo simulation, especially to obtain the best sensitivity in the energy range between 10 GeV and 100 GeV. We will report the performance of the array of Large IACTs with advanced technologies and its limitation.



قيم البحث

اقرأ أيضاً

The Cherenkov Telescope Array (CTA) represents the next generation of ground based instruments for Very High Energy gamma-ray astronomy. It is expected to improve on the sensitivity of current instruments by an order of magnitude and provide energy c overage from 20 GeV to more than 200 TeV. In order to achieve these ambitious goals Monte Carlo (MC) simulations play a crucial role, guiding the design of CTA. Here, results of the second large-scale MC production are reported, providing a realistic estimation of feasible array candidates for both Northern and Sourthern Hemisphere sites performance, placing CTA capabilities into the context of the current generation of High Energy $gamma$-ray detectors.
69 - S. Vincent 2015
We present a sophisticated likelihood reconstruction algorithm for shower-image analysis of imaging Cherenkov telescopes. The reconstruction algorithm is based on the comparison of the camera pixel amplitudes with the predictions from a Monte Carlo b ased model. Shower parameters are determined by a maximisation of a likelihood function. Maximisation of the likelihood as a function of shower fit parameters is performed using a numerical non-linear optimisation technique. A related reconstruction technique has already been developed by the CAT and the H.E.S.S. experiments, and provides a more precise direction and energy reconstruction of the photon induced shower compared to the second moment of the camera image analysis. Examples are shown of the performance of the analysis on simulated gamma-ray data from the VERITAS array.
We present a sophisticated gamma-ray likelihood reconstruction technique for Imaging Atmospheric Cerenkov Telescopes. The technique is based on the comparison of the raw Cherenkov camera pixel images of a photon induced atmospheric particle shower wi th the predictions from a semi-analytical model. The approach was initiated by the CAT experiment in the 1990s, and has been further developed by a new fit algorithm based on a log-likelihood minimisation using all pixels in the camera, a precise treatment of night sky background noise, the use of stereoscopy and the introduction of first interaction depth as parameter of the model. The reconstruction technique provides a more precise direction and energy reconstruction of the photon induced shower compared to other techniques in use, together with a better gamma efficiency, especially at low energies, as well as an improved background rejection. For data taken with the H.E.S.S. experiment, the reconstruction technique yielded a factor of ~2 better sensitivity compared to the H.E.S.S. standard reconstruction techniques based on second moments of the camera images (Hillas Parameter technique).
129 - Jamie Holder 2015
The stereoscopic imaging atmospheric Cherenkov technique, developed in the 1980s and 1990s, is now used by a number of existing and planned gamma-ray observatories around the world. It provides the most sensitive view of the very high energy gamma-ra y sky (above 30 GeV), coupled with relatively good angular and spectral resolution over a wide field-of-view. This Chapter summarizes the details of the technique, including descriptions of the telescope optical systems and cameras, as well as the most common approaches to data analysis and gamma-ray reconstruction.
The IceCube Neutrino Observatory has revealed the existence of sources of high-energy astrophysical neutrinos. However, identification of the sources is challenging because astrophysical neutrinos are difficult to separate from the background of atmo spheric neutrinos produced in cosmic-ray-induced particle cascades in the atmosphere. The efficient detection of air showers in coincidence with detected neutrinos can greatly reduce those backgrounds and increase the sensitivity of neutrino telescopes. Imaging Air Cherenkov Telescopes (IACTs) are sensitive to gamma-ray-induced (and cosmic-ray-induced) air showers in the 50 GeV to 50 TeV range, and can therefore be used as background-identifiers for neutrino observatories. This paper describes the feasibility of an array of small scale, wide field-of-view, cost-effective IACTs as an air shower veto for neutrino astronomy. A surface array of 250 to 750 telescopes would significantly improve the performance of a cubic kilometer-scale detector like IceCube, at a cost of a few percent of the original investment. The number of telescopes in the array can be optimized based on astronomical and geometrical considerations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا