ﻻ يوجد ملخص باللغة العربية
The Imaging Air Cherenkov Telescopes (IACTs), like, HESS, MAGIC and VERITAS well demonstrated their performances by showing many exciting results at very high energy gamma ray domain, mainly between 100 GeV and 10 TeV. It is important to investigate how much we can improve the sensitivity in this energy range, but it is also important to expand the energy coverage and sensitivity towards new domains, the lower and higher energies, by extending this IACT techniques. For this purpose, we have carried out the optimization of the array of large IACTs assuming with new technologies, advanced photodetectors, and Ultra Fast readout system by Monte Carlo simulation, especially to obtain the best sensitivity in the energy range between 10 GeV and 100 GeV. We will report the performance of the array of Large IACTs with advanced technologies and its limitation.
The Cherenkov Telescope Array (CTA) represents the next generation of ground based instruments for Very High Energy gamma-ray astronomy. It is expected to improve on the sensitivity of current instruments by an order of magnitude and provide energy c
We present a sophisticated likelihood reconstruction algorithm for shower-image analysis of imaging Cherenkov telescopes. The reconstruction algorithm is based on the comparison of the camera pixel amplitudes with the predictions from a Monte Carlo b
We present a sophisticated gamma-ray likelihood reconstruction technique for Imaging Atmospheric Cerenkov Telescopes. The technique is based on the comparison of the raw Cherenkov camera pixel images of a photon induced atmospheric particle shower wi
The stereoscopic imaging atmospheric Cherenkov technique, developed in the 1980s and 1990s, is now used by a number of existing and planned gamma-ray observatories around the world. It provides the most sensitive view of the very high energy gamma-ra
The IceCube Neutrino Observatory has revealed the existence of sources of high-energy astrophysical neutrinos. However, identification of the sources is challenging because astrophysical neutrinos are difficult to separate from the background of atmo