ﻻ يوجد ملخص باللغة العربية
We present a fully quantum mechanical treatment of optically rephased photon echoes. These echoes exhibit noise due to amplified spontaneous emission, however this noise can be seen as a consequence of the entanglement between the atoms and the output light. With a rephasing pulse one can get an echo of the amplified spontaneous emission, leading to light with nonclassical correlations at points separated in time, which is of interest in the context of building wide bandwidth quantum repeaters. We also suggest a wideband version of DLCZ protocol based on the same ideas.
Developments in quantum technologies lead to new applications that require radiation sources with specific photon statistics. A widely used Poissonian statistics are easily produced by lasers; however, some applications require super- or sub-Poissoni
Population inversion on the 5D-6P transition in Rb atoms produced by cw excitation at different wavelengths has been analysed by comparing the generated mid-IR radiation at 5.23 um originated from amplified spontaneous emission and isotropic blue flu
Photon echo is a fundamental tool for the manipulation of electromagnetic fields. Unavoidable spontaneous emission noise is generated in this process due to the strong rephasing pulse, which limits the achievable signal-to-noise ratio and represents
Amplified spontaneous emission is a common noise source in active optical systems, it is generally seen as being an incoherent process. Here we excite an ensemble of rare earth ion dopants in a solid with a {pi}-pulse, resulting in amplified spontane
The generation of non-classical states of light via photon blockade with time-modulated input is analyzed. We show that improved single photon statistics can be obtained by adequately choosing the parameters of the driving laser pulses. An alternativ