ﻻ يوجد ملخص باللغة العربية
We simulate the growth of isolated dark matter haloes from self-similar and spherically symmetric initial conditions. Our N-body code integrates the geodesic deviation equation in order to track the streams and caustics associated with individual simulation particles. The radial orbit instability causes our haloes to develop major-to-minor axis ratios approaching 10 to 1 in their inner regions. They grow similarly in time and have similar density profiles to the spherical similarity solution, but their detailed structure is very different. The higher dimensionality of the orbits causes their stream and caustic densities to drop much more rapidly than in the similarity solution. This results in a corresponding increase in the number of streams at each point. At 1% of the turnaround radius (corresponding roughly to the Suns position in the Milky Way) we find of order 10^6 streams in our simulations, as compared to 10^2 in the similarity solution. The number of caustics in the inner halo increases by a factor of several, because a typical orbit has six turning points rather than one, but caustic densities drop by a much larger factor. This reduces the caustic contribution to the annihilation radiation. For the region between 1% and 50% of the turnaround radius, this is 4% of the total in our simulated haloes, as compared to 6.5% in the similarity solution. Caustics contribute much less at smaller radii. These numbers assume a 100 GeV c^-2 neutralino with present-day velocity dispersion 0.03 cm s^-1, but reducing the dispersion by ten orders of magnitude only doubles the caustic luminosity. We conclude that caustics will be unobservable in the inner parts of haloes. Only the outermost caustic might potentially be detectable.
The development of methods and algorithms to solve the $N$-body problem for classical, collisionless, non-relativistic particles has made it possible to follow the growth and evolution of cosmic dark matter structures over most of the Universes histo
We present a new algorithm for identifying the substructure within simulated dark matter haloes. The method is an extension of that proposed by Tormen et al. (2004) and Giocoli et al. (2008a), which identifies a subhalo as a group of self-bound parti
We study how tidal streams from globular clusters may be used to constrain the mass of ultra-light dark matter particles, called `fuzzy dark matter (FDM). A general feature of FDM models is the presence of ubiquitous density fluctuations in bound, vi
We present N-body simulations of a new class of self-interacting dark matter models, which do not violate any astrophysical constraints due to a non-power-law velocity dependence of the transfer cross section which is motivated by a Yukawa-like new g
We show that hidden hot dark matter, hidden-sector dark matter with interactions that decouple when it is relativistic, is a viable dark matter candidate provided it has never been in thermal equilibrium with the particles of the standard model. This