ﻻ يوجد ملخص باللغة العربية
In the context of the Oppenheim-Horodecki paradigm of nonclassical correlation, a bipartite quantum state is (properly) classically correlated if and only if it is represented by a density matrix having a product eigenbasis. On the basis of this paradigm, we propose a measure of nonclassical correlation by using truncations of a density matrix down to individual eigenspaces. It is computable within polynomial time in the dimension of the Hilbert space albeit imperfect in the detection range. This is in contrast to the measures conventionally used for the paradigm. The computational complexity and mathematical properties of the proposed measure are investigated in detail and the physical picture of its definition is discussed.
Complementarity theory is the essence of the Copenhagen interpretation. Since the Hanbury Brown and Twiss experiments, the particle nature of photons has been intensively studied for various quantum phenomena such as anticorrelation and Bell inequali
Continuous variable entanglement is a manifestation of nonclassicality of quantum states. In this paper we attempt to analyze whether and under which conditions nonclassicality can be used as an entanglement criterion. We adopt the well-accepted defi
Existing measures of bipartite nonclassical correlation that is typically characterized by nonvanishing nonlocalizable information under the zero-way CLOCC protocol are expensive in computational cost. We define and evaluate economical measures on th
We have observed the three-photon correlation in nonclassical light sources by using an indirect measurement scheme based on the dead time effect of photon-counting detectors. We first developed a general theory which enables us to extract the three-
Many-qubit entanglement is crucial for quantum information processing although its exploitation is hindered by the detrimental effects of the environment surrounding the many-qubit system. It is thus of importance to study the dynamics of general mul