ﻻ يوجد ملخص باللغة العربية
Free energy of crystal phases is commonly evaluated by thermodynamic integration (TDI) along a reversible path that involves an external potential. A persistent problem in this method is that a significant hysteresis is observed due to differences in the center of mass position of the crystal phase in the presence and absence of the external potential. To alleviate this hysteresis, a constraint on the translational degrees of freedom of the crystal phase is imposed along the path and subsequently a correction term is added to the free energy to account for such a constraint. In this work, we propose a new methodology termed as error-biased Bennett Acceptance ratio (EBAR) method that effectively solves this problem without the need to impose any constraint. This method is simple to implement as it does not require any modification to the path or to the simulation code. We show the applicability of this method in the computation of crystal-melt interfacial energy by cleaving wall method [J. Chem. Phys., 118, 7651 (2003)] and bulk crystal-melt free energy difference by constrained fluid $lambda$-integration method [J. Chem. Phys., 120, 2122 (2004)] for a model potential of silicon.
Direct correlation between temporal structural fluctuations and electron wind force is demonstrated, for the first time, by STM imaging and analysis of atomically-resolved motion on a thin film surface under large applied current (10e5 Amp/sqare cm).
Very recently we developed an efficient method to calculate the free energy of 2D materials on substrates and achieved high calculation precision for graphene or $gamma$-graphyne on copper substrates. In the present work, the method was further confi
A method based on the Gibbs adsorption isotherm is developed to calculate the decrease in interfacial free energy resulting from solute segregation at an internal interface, built on measured concentration profiles. Utilizing atom-probe tomography (A
By suitably adapting a recent approach [A. Laio and M. Parrinello, PNAS, 99, 12562 (2002)] we develop a powerful molecular dynamics method for the study of pressure-induced structural transformations. We use the edges of the simulation cell as collec
We introduce an approach to exploit the existence of multiple levels of description of a physical system to radically accelerate the determination of thermodynamic quantities. We first give a proof of principle of the method using two empirical inter