ﻻ يوجد ملخص باللغة العربية
We have developed a stellar wind model for OB supergiants to investigate the effects of accretion from a clumpy wind on the luminosity and variability properties of High Mass X-ray Binaries. Assuming that the clumps are confined by ram pressure of the ambient gas and exploring different distributions for their mass and radii, we computed the expected X-ray light curves in the framework of the Bondi-Hoyle accretion theory, modified to take into account the presence of clumps. The resulting variability properties are found to depend not only on the assumed orbital parameters but also on the wind characteristics. We have then applied this model to reproduce the X-ray light curves of three representative High Mass X-ray Binaries: two persistent supergiant systems (VelaX-1 and 4U1700-377) and the Supergiant Fast X-ray Transient IGRJ11215-5952. The model can reproduce well the observed light curves, but requiring in all cases an overall mass loss from the supergiant about a factor 3-10 smaller than the values inferred from UV lines studies that assume a homogeneous wind.
Massive stars, at least $sim$ 10 times more massive than the Sun, have two key properties that make them the main drivers of evolution of star clusters, galaxies, and the Universe as a whole. On the one hand, the outer layers of massive stars are so
High Mass X-ray Binaries (HMXB) have been revealed by a wealth of multi-wavelength observations, from X-ray to optical and infrared domain. After describing the 3 different kinds of HMXB, we focus on 3 HMXB hosting supergiant stars: IGR J16320-4751,
Supergiant Fast X-ray Transients (SFXTs) are a new class of High Mass X-ray Binaries, discovered by the INTEGRAL satellite, which display flares lasting from minutes to hours, with peak luminosity of 1E36-1E37 erg/s. Outside the bright outbursts, the
We present preliminary results on Herschel/PACS mid/far-infrared photometric observations of INTEGRAL supergiant High Mass X-ray Binaries (HMXBs), with the aim of detecting the presence and characterizing the nature of absorbing material (dust and/or
In young starburst galaxies, the X-ray population is expected to be dominated by the relics of the most massive and short-lived stars, black-hole and neutron-star high mass X-ray binaries (XRBs). In the closest such galaxy, IC 10, we have made a mult