ﻻ يوجد ملخص باللغة العربية
We study the properties of two-color nonlinear localized modes which may exist at the interfaces separating two different periodic photonic lattices in quadratic media, focussing on the impact of phase mismatch of the photonic lattices on the properties, stability, and threshold power requirements for the generation of interface localized modes. We employ both an effective discrete model and continuum model with periodic potential and find good qualitative agreement between both models. Dynamics excitation of interface modes shows that, a two-color interface twisted mode splits into two beams with different escaping angles and carrying different energies when entering a uniform medium from the quadratic photonic lattice. The output position and energy contents of each two-color interface solitons can be controlled by judicious tuning of
We report on the frst experimental observation of discrete vortex solitons in two-dimensional optically-induced photonic lattices. We demonstrate strong stabilization of an optical vortex by the lattice in a self-focusing nonlinear medium and study t
We investigate numerically and experimentally the influence of coupling disorder on the self-trapping dynamics in nonlinear one-dimensional optical waveguide arrays. The existence of a lower and upper bound of the effective average propagation consta
We investigate the interaction between a light beam and a two-dimensional photonic lattice that is photo-induced in a photorefractive crystal using partially coherent light. We demonstrate that this interaction process is associated with a host of ne
In this paper we analyze the existence, stability, dynamical formation and mobility properties of localized solutions in a one-dimensional system described by the discrete nonlinear Schr{o}dinger equation with a linear point defect. We consider both
We prove existence of discrete solitons in infinite parity-time (PT-) symmetric lattices by means of analytical continuation from the anticontinuum limit. The energy balance between dissipation and gain implies that in the anticontinuum limit the sol