A non-crossing pairing on a bitstring matches 1s and 0s in a manner such that the pairing diagram is nonintersecting. By considering such pairings on arbitrary bitstrings $1^{n_1} 0^{m_1} ... 1^{n_r} 0^{m_r}$, we generalize classical problems from the theory of Catalan structures. In particular, it is very difficult to find useful explicit formulas for the enumeration function $phi(n_1, m_1, ..., n_r, m_r)$, which counts the number of pairings as a function of the underlying bitstring. We determine explicit formulas for $phi$, and also prove general upper bounds in terms of Fuss-Catalan numbers by relating non-crossing pairings to other generalized Catalan structures (that are in some sense more natural). This enumeration problem arises in the theory of random matrices and free probability.