ترغب بنشر مسار تعليمي؟ اضغط هنا

Evaluation of the $^{52}$Cr-$^{52}$Cr interaction via spin-flip scatterings

176   0   0.0 ( 0 )
 نشر من قبل Yanzhang He
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In order to evaluate $g_0$, the interaction strength of a pair of $^{52}$Cr atoms with total spin S=0, a specially designed s-wave scattering of the pair has been studied theoretically. Both the incident atom and the target atom trapped by a harmonic potential are polarized previously but in reverse directions. Due to spin-flip, the outgoing atom may have spin component $mu$ ranging from -3 to 3. The outgoing channels are classified by $mu$. The effect of $g_{0}$ on the scattering amplitudes of each of these $mu-$channels has been predicted.



قيم البحث

اقرأ أيضاً

We have observed Feshbach resonances in elastic collisions between ultracold ${}^{52}$Cr atoms. This is the first observation of collisional Feshbach resonances in an atomic species with more than one valence electron. The zero nuclear spin of ${}^{5 2}$Cr and thus the absence of a Fermi-contact interaction leads to regularly-spaced resonance sequences. By comparing resonance positions with multi-channel scattering calculations we determine the s-wave scattering length of the lowest $^{2S+1}Sigma_{g}^{+}$ potentials to be $unit[112(14)]{a_0}$, $unit[58(6)]{a_0}$ and $-unit[7(20)]{a_0}$ for S=6, 4, and 2, respectively, where $a_{0}=unit[0.0529]{nm}$.
141 - H. G. Zhang , B.T Song , J. Chen 2018
A systematic investigation about the structure and magnetism of Fe75-xCr25Gax (11<x<33) and Fe50Cr50-yGay (0<y<33) series has been carried out in this work. It shows that the parent Fe50Cr25Ga25 phase has higher tolerance for Ga replacing Cr than rep lacing Fe atoms. An abrupt flip of Curie temperature and magnetization in the Fe50Cr50-yGay (0<y<33) series was observed at the composition of Fe50Cr25Ga25. We proposed an explanation concerning anti-sites occupation and magnetic structure transition in this series. The induced structure is proved energetically favorable from first-principles calculations. This work can help us to understand the dependences between the crystal structure and magnetism in Fe-based Heusler compounds, and provides a method to deduce the atomic configurations based on the evolution of magnetism.
We study the magnetization and the spin dynamics of the Cr$_7$Ni ring-shaped magnetic cluster. Measurements of the magnetization at high pulsed fields and low temperature are compared to calculations and show that the spin Hamiltonian approach provid es a good description of Cr$_7$Ni magnetic molecule. In addition, the phonon-induced relaxation dynamics of molecular observables has been investigated. By assuming the spin-phonon coupling to take place through the modulation of the local crystal fields, it is possible to evaluate the decay of fluctuations of two generic molecular observables. The nuclear spin-lattice relaxation rate $1/T_1$ directly probes such fluctuations, and allows to determine the magnetoelastic coupling strength.
158 - C. Y. Fu , Y. H. Zhang , M. Wang 2020
By using isochronous mass spectrometry (IMS) at the experimental cooler storage ring CSRe, masses of short-lived $^{44}$Cr, $^{46}$Mn, $^{48}$Fe, $^{50}$Co and $^{52}$Ni were measured for the first time and the precision of the mass of $^{40}$Ti was improved by a factor of about 2. Relative precisions of $delta m/m=(1-2)times$10$^{-6}$ have been achieved. Details of the measurements and data analysis are described. The obtained masses are compared with the Atomic-Mass Evaluation 2016 (AME$^{prime}$16) and with theoretical model predictions. The new mass data enable us to extract the higher order coefficients, $d$ and $e$, of the quartic form of the isobaric multiplet mass equation (IMME) for the $fp$-shell isospin quintets. Unexpectedly large $d$- and $e$-values for $A=44$ quintet are found. By re-visiting the previous experimental data on $beta$-delayed protons from $^{44}$Cr decay, it is suggested that the observed anomaly could be due to the misidentification of the $T=2$, $J^pi=0^{+}$ isobaric analog state (IAS) in $^{44}$V.
In this paper we characterize sums of CR functions from competing CR structures in two scenarios. In one scenario the structures are conjugate and we are adding to the theory of pluriharmonic boundary values. In the second scenario the structures are related by projective duality considerations. In both cases we provide explicit vector field-based characterizations for two-dimensional circular domains satisfying natural convexity conditions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا