ﻻ يوجد ملخص باللغة العربية
A strong hard X-ray luminosity from a blazar flags the presence of a very powerful jet. If the jet power is in turn related to the mass accretion rate, the most luminous hard X-ray blazars should pinpoint the largest accretion rates, and therefore the largest black hole masses. These ideas are confirmed by the Swift satellite observations of the blazar S5 0014+813, at the redshift z=3.366. Swift detected this source with all its three instruments, from the optical to the hard X-rays. Through the construction of its spectral energy distribution we are confident that its optical-UV emission is thermal in origin. Associating it to the emission of a standard optically thick geometrically thin accretion disk, we find a black hole mass of 40 billion solar masses, radiating at 40% the Eddington value. The derived mass is among the largest ever found. Super-Eddington slim disks or thick disks with the presence of a collimating funnel can in principle reduce the black hole mass estimate, but tends to produce spectra bluer than observed.
4C 71.07 is a high-redshift blazar whose optical radiation is dominated by quasar-like nuclear emission. We here present the results of a spectroscopic monitoring of the source to study its unbeamed properties. We obtained 24 optical spectra at the N
We present early-time optical through infrared photometry of the bright gamma-ray burst GRB 080607, starting only 6 s following the initial trigger in the rest frame. Complemented by our previously published spectroscopy, this high-quality photometri
The emission from blazars is known to be variable at all wavelengths. The flux variability is often accompanied by spectral changes. Spectral energy distribution (SED) changes must be associated with changes in the spectra of emitting electrons and/o
IceCube has reported a very-high-energy neutrino (IceCube-170922A) in a region containing the blazar TXS 0506+056. Correlated {gamma}-ray activity has led to the first high-probability association of a high-energy neutrino with an extragalactic sourc
The most distant quasar yet discovered sets constraints on the formation mechanism of black holes. Its light spectrum has tantalizing features that are expected to be observed before the reionization epoch ended.