ﻻ يوجد ملخص باللغة العربية
Using a positive semidefinite operator technique one deduces exact ground states for a zig-zag hexagon chain described by a non-integrable Hubbard model with on-site repulsion. Flat bands are not present in the bare band structure, and the operators $hat B^{dagger}_{mu,sigma}$ introducing the electrons into the ground state, are all extended operators and confined in the quasi 1D chain structure of the system. Consequently, increasing the number of carriers, the $hat B^{dagger}_{mu,sigma}$ operators become connected i.e. touch each other on several lattice sites. Hence the spin projection of the carriers becomes correlated in order to minimize the ground state energy by reducing as much as possible the double occupancy leading to a ferromagnetic ground state. This result demonstrates in exact terms in a many-body frame that the conjecture made at two-particle level by G. Brocks et al. [Phys.Rev.Lett.93,146405,(2004)] that the Coulomb interaction is expected to stabilize correlated magnetic ground states in acenes is clearly viable, and opens new directions in the search for routes in obtaining organic ferromagnetism. Due to the itinerant nature of the obtained ferromagnetic ground state, the systems under discussion may have also direct application possibilities in spintronics.
Weak itinerant ferromagnetism in YCo9Si4 below about 25 K is studied by means of magnetisation, specific heat, and resistivity measurements. Single crystal X-ray Rietveld refinements at room temperature reveal a fully ordered distribution of Y, Co an
We have performed an extensive pressure-dependent structural, spectroscopic, and electrical transport study of LaCrSb$_3$. The ferromagnetic phase (T$_C$ = 120 K at p = 0 GPa) is fully suppressed by p = 26.5 GPa and the Cr-moment decreases steadily w
We propose an experiment to explore the magnetic phase transitions in interacting fermionic Hubbard systems, and describe how to obtain the ferromagnetic phase diagram of itinerant electron systems from these observations. In addition signatures of f
The noncentrosymmetric ferromagnet Cr11Ge19 has been investigated by electrical transport, AC and DC magnetization, heat capacity, x-ray diffraction, resonant ultrasound spectroscopy, and first principles electronic structure calculations. Complex it
We report measurements of the magnetic, transport and thermal properties of the Heusler type compound Fe2VAl0.95. We show that while stoichiometric Fe2VAl is a non-magnetic semi-metal a 5% substitution on the Al-site with the 3d elements Fe and V ato