ﻻ يوجد ملخص باللغة العربية
A commercial, position-sensitive ion detector was used for the first time for the time-of-flight ion-cyclotron resonance detection technique in Penning trap mass spectrometry. In this work, the characteristics of the detector and its implementation in a Penning trap mass spectrometer will be presented. In addition, simulations and experimental studies concerning the observation of ions ejected from a Penning trap are described. This will allow for a precise monitoring of the state of ion motion in the trap.
Background: The understanding and description of forbidden decays provides interesting challenges for nuclear theory. These calculations could help to test underlying nuclear models and interpret experimental data. Purpose: Compare a direct measureme
Isobaric quintets provide the best test of the isobaric multiplet mass equation (IMME) and can uniquely identify higher order corrections suggestive of isospin symmetry breaking effects in the nuclear Hamiltonian. The Generalized IMME (GIMME) is a no
Background: Ultra-low $Q$-value $beta$-decays are interesting processes to study with potential applications to nuclear $beta$-decay theory and neutrino physics. While a number of potential ultra-low $Q$-value $beta$-decay candidates exist, improved
The masses of 40 neutron-rich nuclides from Z = 51 to 64 were measured at an average precision of $delta m/m= 10^{-7}$ using the Canadian Penning Trap mass spectrometer at Argonne National Laboratory. The measurements, of fission fragments from a $^{
The technique of Penning trap mass spectrometry is briefly reviewed particularly in view of precision experiments on unstable nuclei, performed at different facilities worldwide. Selected examples of recent results emphasize the importance of high-pr