ترغب بنشر مسار تعليمي؟ اضغط هنا

On a generalization of distance sets

236   0   0.0 ( 0 )
 نشر من قبل Hiroshi Nozaki Dr.
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A subset $X$ in the $d$-dimensional Euclidean space is called a $k$-distance set if there are exactly $k$ distinct distances between two distinct points in $X$ and a subset $X$ is called a locally $k$-distance set if for any point $x$ in $X$, there are at most $k$ distinct distances between $x$ and other points in $X$. Delsarte, Goethals, and Seidel gave the Fisher type upper bound for the cardinalities of $k$-distance sets on a sphere in 1977. In the same way, we are able to give the same bound for locally $k$-distance sets on a sphere. In the first part of this paper, we prove that if $X$ is a locally $k$-distance set attaining the Fisher type upper bound, then determining a weight function $w$, $(X,w)$ is a tight weighted spherical $2k$-design. This result implies that locally $k$-distance sets attaining the Fisher type upper bound are $k$-distance sets. In the second part, we give a new absolute bound for the cardinalities of $k$-distance sets on a sphere. This upper bound is useful for $k$-distance sets for which the linear programming bound is not applicable. In the third part, we discuss about locally two-distance sets in Euclidean spaces. We give an upper bound for the cardinalities of locally two-distance sets in Euclidean spaces. Moreover, we prove that the existence of a spherical two-distance set in $(d-1)$-space which attains the Fisher type upper bound is equivalent to the existence of a locally two-distance set but not a two-distance set in $d$-space with more than $d(d+1)/2$ points. We also classify optimal (largest possible) locally two-distance sets for dimensions less than eight. In addition, we determine the maximum cardinalities of locally two-distance sets on a sphere for dimensions less than forty.



قيم البحث

اقرأ أيضاً

A finite subset $X$ of the Euclidean space is called an $m$-distance set if the number of distances between two distinct points in $X$ is equal to $m$. An $m$-distance set $X$ is said to be maximal if any vector cannot be added to $X$ while maintaini ng the $m$-distance condition. We investigate a necessary and sufficient condition for vectors to be added to a regular simplex such that the set has only $2$ distances. We construct several $d$-dimensional maximal $2$-distance sets that contain a $d$-dimensional regular simplex. In particular, there exist infinitely many maximal non-spherical $2$-distance sets that contain both the regular simplex and the representation of a strongly resolvable design. The maximal $2$-distance set has size $2s^2(s+1)$, and the dimension is $d=(s-1)(s+1)^2-1$, where $s$ is a prime power.
Let $mathbb{F}_q$ be a finite field of order $q$, and $P$ be the paraboloid in $mathbb{F}_q^3$ defined by the equation $z=x^2+y^2$. A tuple $(a, b, c, d)in P^4$ is called a non-trivial energy tuple if $a+b=c+d$ and $a, b, c, d$ are distinct. For $Xsu bset P$, let $mathcal{E}^+(X)$ be the number of non-trivial energy tuples in $X$. It was proved recently by Lewko (2020) that $mathcal{E}^+(X)ll |X|^{frac{99}{41}}$ for $|X|ll q^{frac{26}{21}}$. The main purposes of this paper are to prove lower bounds of $mathcal{E}^+(X)$ and to study related questions by using combinatorial arguments and a weak hypergraph regularity lemma developed recently by Lyall and Magyar (2020).
A set $X$ in the Euclidean space $mathbb{R}^d$ is called an $m$-distance set if the set of Euclidean distances between two distinct points in $X$ has size $m$. An $m$-distance set $X$ in $mathbb{R}^d$ is said to be maximal if there does not exist a v ector $x$ in $mathbb{R}^d$ such that the union of $X$ and ${x}$ still has only $m$ distances. Bannai--Sato--Shigezumi (2012) investigated the maximal $m$-distance sets which contain the Euclidean representation of the Johnson graph $J(n,m)$. In this paper, we consider the same problem for the Hamming graph $H(n,m)$. The Euclidean representation of $H(n,m)$ is an $m$-distance set in $mathbb{R}^{m(n-1)}$. We prove that the maximum $n$ is $m^2 + m - 1$ such that the representation of $H(n,m)$ is not maximal as an $m$-distance set. Moreover we classify the largest $m$-distance sets which contain the representation of $H(n,m)$ for $mleq 4$ and any $n$. We also classify the maximal $2$-distance sets in $mathbb{R}^{2n-1}$ which contain the representation of $H(n,2)$ for any $n$.
We prove in this note that, for an alphabet with three letters, the set of first return to a given word in a set satisfying the tree condition is a basis of the free group.
In analogy to the definition of the lambda-determinant, we define a one-parameter deformation of the Dodgson condensation formula for Pfaffians. We prove that the resulting rational function is a polynomial with weights given by the crossings and nes tings of perfect matchings and prove several identities and closed-form evaluations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا