ترغب بنشر مسار تعليمي؟ اضغط هنا

Near-threshold Lambda(1520) production by the gamma p -> K+Lambda(1520) reaction at forward K+ angles

141   0   0.0 ( 0 )
 نشر من قبل Hideki Kohri
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Differential cross sections and photon-beam asymmetries for the gamma p -> K+ Lambda(1520) reaction have been measured with linearly polarized photon beams at energies from the threshold to 2.4 GeV at 0.6<cos(theta)<1. A new bump structure was found at W=2.11 GeV in the cross sections. The bump is not well reproduced by theoretical calculations introducing a nucleon resonance with J<=3/2. This result suggests that the bump might be produced by a nucleon resonance possibly with J>=5/2 or by a new reaction process, for example an interference effect with the phi photoproduction having a similar bump structure in the cross sections.



قيم البحث

اقرأ أيضاً

77 - S. Y. Ryu , J. K. Ahn , T. Nakano 2016
The $phi$-$Lambda(1520)$ interference effect in the $gamma pto K^+K^-p$ reaction has been measured for the first time in the energy range from 1.673 to 2.173 GeV. The relative phases between $phi$ and $Lambda(1520)$ production amplitudes were obtaine d in the kinematic region where the two resonances overlap. The measurement results support strong constructive interference when $K^+K^-$ pairs are observed at forward angles, but destructive interference for proton emission at forward angles. Furthermore, the observed interference effect does not account for the $sqrt{s}=2.1$ GeV bump structure in forward differential cross sections for $phi$ photoproduction. This fact suggests possible exotic structures such as a hidden-strangeness pentaquark state, a new Pomeron exchange and rescattering processes via other hyperon states.
59 - T. Hyodo 2006
We study the coupling of the Lambda(1520)= Lambda* resonance to the bar K* vector meson and nucleon. This coupling is not directly measured from the resonance decay, but is expected to be important in hyperon production reactions, in particular for t he exotic Theta+ production. We compute the coupling in two different schemes, one in the chiral unitary model where the Lambda* is dominated by the quasibound state of mesons and baryons, and the other in the quark model where the resonance is a p-wave excitation in the three valence quarks. Although it is possible to construct both models such that they reproduce the bar K N and pi Sigma decays, there is a significant difference between the Lambda* bar K* N couplings in the two models. In the chiral unitary model $|g_{Lambda^*bar{K}^* N}| sim 1.5$, while in the quark model $|g_{Lambda^*bar{K}^* N}| sim 10$. The difference of the results stems from the different structure of the Lambda* in both models, and hence, an experimental determination of this coupling would shed light on the nature of the resonance.
Photoproduction of $Lambda$(1520) with liquid hydrogen and deuterium targets was examined at photon energies below 2.4 GeV in the SPring-8 LEPS experiment. For the first time, the differential cross sections were measured at low energies and with a d euterium target. A large asymmetry of the production cross sections from protons and neutrons was observed at backward K$^{+/0}$ angles. This suggests the importance of the contact term, which coexists with t-channel K exchange under gauge invariance. This interpretation was compatible with the differential cross sections, decay asymmetry, and photon beam asymmetry measured in the production from protons at forward K$^+$ angles.
To search for an S= -1 di-baryonic state which decays to $Lambda p$, the $ {rm{}^3He}(K^-,Lambda p)n_{missing}$ reaction was studied at 1.0 GeV/$c$. Unobserved neutrons were kinematically identified from the missing mass $M_X$ of the $ {rm{}^3He}(K^- ,Lambda p)X$ reaction in order to have a large acceptance for the $Lambda pn$ final state. The observed $Lambda p n$ events, distributed widely over the kinematically allowed region of the Dalitz plot, establish that the major component comes from a three nucleon absorption process. A concentration of events at a specific neutron kinetic energy was observed in a region of low momentum transfer to the $Lambda p$. To account for the observed peak structure, the simplest S-wave pole was assumed to exist in the reaction channel, having Breit-Wigner form in energy and with a Gaussian form-factor. A minimum $chi^2$ method was applied to deduce its mass $M_X =$ 2355 $ ^{+ 6}_{ - 8}$ (stat.) $ pm 12$ (syst.) MeV/c$^2$, and decay-width $Gamma_X = $ 110 $ ^{+ 19}_{ - 17}$ (stat.) $ pm 27$ (syst.) MeV/c$^2$, respectively. The form factor parameter $Q_X sim$ 400 MeV/$c$ implies that the range of interaction is about 0.5
83 - M. Sumihama 2005
Differential cross sections and photon beam asymmetries for the gamma p rightarrow K+ Lambda and gamma p rightarrow K+ Sigma0 reactions have been measured in the photon energy range from 1.5 GeV to 2.4 GeV and in the angular range from Theta_{cm} = 0 to 60 of the K+ scattering angle in the center of mass system at the SPring-8/LEPS facility. The photon beam asymmetries for both the reactions have been found to be positive and to increase with the photon energy. The measured differential cross sections agree with the data measured by the CLAS collaboration at cosTheta_{cm}<0.9 within the experimental uncertainties, but the discrepancy with the SAPHIR data for the K+Lambda reaction is large at cosTheta_{cm}>0.9. In the K+Lambda reaction, the resonance-like structure found in the CLAS and SAPHIR data at W=1.96 GeV is confirmed. The differential cross sections at forward angles suggest a strong K-exchange contribution in the t-channel for the K+Lambda reaction, but not for the K+Sigma0 reaction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا