ﻻ يوجد ملخص باللغة العربية
To further our knowledge of the complex physical process of galaxy formation, it is essential that we characterize the formation and evolution of large databases of galaxies. The spectral synthesis STARLIGHT code of Cid Fernandes et al. (2004) was designed for this purpose. Results of STARLIGHT are highly dependent on the choice of input basis of simple stellar population (SSP) spectra. Speed of the code, which uses random walks through the parameter space, scales as the square of the number of basis spectra, making it computationally necessary to choose a small number of SSPs that are coarsely sampled in age and metallicity. In this paper, we develop methods based on diffusion map (Lafon & Lee, 2006) that, for the first time, choose appropriate bases of prototype SSP spectra from a large set of SSP spectra designed to approximate the continuous grid of age and metallicity of SSPs of which galaxies are truly composed. We show that our techniques achieve better accuracy of physical parameter estimation for simulated galaxies. Specifically, we show that our methods significantly decrease the age-metallicity degeneracy that is common in galaxy population synthesis methods. We analyze a sample of 3046 galaxies in SDSS DR6 and compare the parameter estimates obtained from different basis choices.
If we are to develop a comprehensive and predictive theory of galaxy formation and evolution, it is essential that we obtain an accurate assessment of how and when galaxies assemble their stellar populations, and how this assembly varies with environ
Context. There are typically two different approaches to infer the mass formation history (MFH) of a given galaxy from its luminosity in different bands. Non-parametric methods are known for their flexibility and accuracy, while parametric models are
We study the radial structure of the stellar mass surface density ($mu$) and stellar population age as a function of the total stellar mass and morphology for a sample of 107 galaxies from the CALIFA survey. We use the fossil record to recover the st
We present the first results of a pilot study aimed at understanding the influence of bars on the evolution of galaxy discs through the study of their stellar content. We examine here the kinematics, star formation history, mass-weighted, luminosity-
We examine the past and current work on the star formation (SF) histories of dwarf galaxies in cosmological hydrodynamic simulations. The results obtained from different numerical methods are still somewhat mixed, but the differences are understandab